गणित

CLASS - 7

सत्र 2019-20

दीक्षा एप कैसे डाउनलोड करें?

विकल्प :1अपने मोबाइल ब्राउज़र पर diksha.gov.in/app टाइप करें।

विकल्प :2Google Play Store में DIKSHA NCTE ढूंढे एवं डाउनलोड बटन पर

tap करें।

मोबाइल पर QR कोड का उपयोग कर डिजिटल विषय वस्तु कैसे प्राप्त करें

DIKSHA को लांच करें --> App की समस्त अनुमति को स्वीकार करें --> उपयोगकर्ता Profile का चयन करें

पाठ्यपुस्तक में QR Code को Scan करने के लिए मोबाइल में QR Code tap करें।

मोबाइल को QR Code पर केन्द्रित करें।

सफल Scan के पश्चात QR Code से लिंक की गई सूची उपलब्ध होगी

डेस्कटॉप पर QR Code का उपयोग कर डिजिटल विषय वस्तु तक कैसे-पहुँचें

1- QR Code के नीचे 6 अंकों का Alpha Numeric Code दिया गया है।

ब्राउजर में diksha. gov.in/cg टाइप करें।

सर्च बार पर डिजिट का 6QR CODE टाइप करें।

प्राप्त विषय-वस्तु की सूची से चाही गई विषय-वस्तु पर क्लिक करें।

राज्य शैक्षिक अनुसंधान और प्रशिक्षण पारिषद छत्तीसगढ़, रायपुर

निःशुल्क वितरण हेतु

प्रकाशन वर्ष 2019

© एस.सी.ई.आर.टी.छ.ग. , रायपुर

सहयोग

हृदय कांत दीवान (विद्या भवन, उदयपुर)

संयोजक

डॉ. विद्यावती चन्द्राकर

विषय समन्वयक

डॉ. सुधीर श्रीवास्तव

समन्वयक

यू. के. चक्रवर्ती

लेखक दल

यू.के चक्रवर्ती, सी.पी.सिंह, एम.एम. मेहता, जी.पी.पांडेय, नागेन्द्र भारती गोस्वामी, एस.आर.साहू, नामदेव, उजेन सिंह राठौर, एस.एन. देवांगन, मीना श्रीमाली, संजय बोल्या, दीपक मंत्री, रंजना शर्मा

आवरण पृष्ठ

रेखराज चौरागड़े, आसिफ, भिलाई

चित्रांकन

रेखराज चौरागड़े, प्रशांत सोनी

प्रकाशक

छत्तीसगढ़ पाठ्यपुस्तक निगम, रायपुर मुद्रक

मुद्रित पुस्तकों की संख्या.....-

आमुख

राष्ट्रीय पाठ्यचर्या की रूपरेखा 2005 में यह स्पष्ट रूप से उल्लेख किया गया है कि प्राथमिक स्तर की स्कूली शिक्षा अवश्य घरेलू भाषा के माध्यम से ही दी जाए। इस महत्वपूर्ण अनुशंसा को साकार रूप देने के लिए ही" छत्तीसगढ़ी पाठ "तैयार की गई है।

मातृभाषा में प्राथमिक शिक्षा के हिमायती शिक्षाविदों में महात्मा गांधी, रवीन्द्रनाथ टैगोर,स्वामी विवेकानंद भी रहे हैं। छत्तीसगढ़ बनने के बाद यद्यपि छत्तीसगढ़ी के पाठों को नई पाठ्यपुस्तकों में स्थान मिला पर उनकी संख्या कम थी। राज्य शैक्षिक अनुसंधान एवं प्रशिक्षण परिषद् के प्रस्ताव पर शासन ने नए शिक्षा सत्र से हिन्दी की प्रचलित पाठ्यपुस्तकों के एक चौथाई पाठों को मातृभाषा में देने का निर्णय लिया। शासन ने यह कार्य एस.सी.ई.आर.टी .को सौंपा जिसके निर्देशानुसार स्थानीय भाषा छत्तीसगढ़ी भाषा में पाठों की रचना की गई।

मातृभाषा में अध्यापन से बच्चों की झिझक समाप्त होती है और वे खुलकर अपने विचार व्यक्त कर पाते हैं। शाला के नए परिवेश में आए बच्चों के लिए स्कूली भाषा की समस्या उनके लिए जिस अजनबीपन को लेकर आती है, मातृभाषा में शिक्षण उसे सहजता से दूर कर देता है।

मातृभाषा में संप्रेषण सहज होने से विद्यार्थियों के लिए व्यक्तित्व विकास व आत्मगौरव के अवसर जुटा देता है। आज का युग ज्ञान-विज्ञान का युग है, ज्ञान-विज्ञान को यदि बच्चे की अपनी भाषा के साथ जोड़ दिया जाए, उनकी भाषा में प्रस्तुत किया जाए तो बच्चे के लिए यह प्रगति की राह सुलभ करवाता है।

प्रारंभ में भारती के वर्तमान पाठों में से एक चौथाई पाठ उनकी अपनी मातृभाषा में दिए गए हैं। धीरे-धीरे मातृभाषा में प्राथमिक शिक्षा की ओर हम आगे बढेंगे।

स्कूल शिक्षा विभाग एवं राज्य शैक्षिक अनुसंधान और प्रशिक्षण परिषद्, छ.ग द्वारा शिक्षकों एवं विद्यार्थियों में दक्षता संवर्धन हेतु अतिरिक्त पाठ्य संसाधन उपलब्ध कराने की दृष्टि से एक अभिनव प्रयास है, जिसे ऑन लाईन एवं ऑफ लाईन डाउनलोड करने के उपरांत उपयोग किया जा सकता है। SCERT का प्रमुख उद्देश्य पाठ्यवस्तु के अतिरिक्त ऑडियो-वीडियो, एनीमेशन फॉरमेट में अधिगम सामग्री, संबंधित अभ्यास, प्रश्न एवं शिक्षकों के लिए संदर्भ सामग्री प्रदान करना है।

इस पुस्तक में मातृभाषा के पाठों में आए हिन्दी के शब्दों को हमने ज्यों' का 'त्यों ले लिया है। इसका कारण यह है कि ज्ञान-विज्ञान की भाषा में हिन्दी ने संस्कृत के शब्दों का प्रयोग जिस तरह किया है, उसी तरह मातृभाषा में हिन्दी के शब्दों का प्रयोग हो तािक मातृभाषा उसे आत्मसात कर अधिक समृद्ध हो तथा विज्ञान जैसे विषय की पढ़ाई में बच्चों को आसानी हो। प्रारंभिक तौर पर इसे मनोरंजक बनाकर और स्थानीयता से जोड़कर प्रस्तुत किया गया है तािक बच्चों को यह अधिक रुचिकर लगे। इस संबंध में प्रारंभिक फीड़बैक हमारा उत्साह बढ़ाने वाला है तथा इस संबंध में आने वाले आपके सुझावों का स्वागत है। ये सुझाव क्षेत्रीय भाषा की पुस्तकों को बेहतर बनाने में हमारी सहायता करेंगे। पुस्तक को तैयार करने में हमें जिन विद्वानों का सहयोग प्रत्यक्ष-अप्रत्यक्ष रूप से मिलाए परिषद् उनके प्रति आभारी है।

संचालक

राज्य शैक्षिक अनुसंधान एवं प्रशिक्षण परिषद् छतीसगढ़, रायपुर

प्राक्कथन

छत्तीसगढ़ राज्य शैक्षिक अनुसंधान और प्रशिक्षण परिषद् की नई किताब बनाने का उद्देश्य बच्चों को स्वतंत्र और जिज्ञासु पाठक बनाना है। परिषद् की पुस्तकों ने यह भी रेखांकित किया है कि भाषा सीखने-सिखाने का दायित्व सिर्फ भाषा की पुस्तक का ही नहीं है वरन् अन्य विषयों की भी इसमें भूमिका है। सामाजिक अध्ययन, विज्ञान व गणित की पुस्तकों को पढ़कर समझने के प्रयास से, स्वतंत्र व समृद्ध पाठक बनाना संभव होता है। पाठ्यपुस्तकों के अलावा विद्वानों द्वारा रचित साहित्यए अन्य प्रसिद्ध लेखकों द्वारा लिखी सामग्री के साथ-साथ बच्चों के लिए अन्य कहानी, कविता, नाटक आदि की पुस्तकों की भी एक महत्वपूर्ण भूमिका है। बच्चों के अनेक स्वाभाविक अनुभवों के बारे में सोचना, उनका गहराई से विश्लेषण करना व इन सबको एक-दूसरे से बाँटना न सिर्फ भाषायी समझ बढ़ाता है वरन् कई और महत्वपूर्ण क्षमताएँ भी प्रदान करता है।

कक्षा आठवीं में पढ़ने वाले बच्चों के भाषायी ज्ञान को और समृद्ध बनाना है। इसमें समझने व अभिव्यक्त करनेए दोनों तरह की क्षमताएँ शामिल हैं। अच्छे लेखकों, किवयों और साहित्यकारों द्वारा लिखी कहानी, किवता, निबंध, नाटक आदि साहित्य की विधाएं तो हैं ही, साथ-ही-साथ ऐसी पुस्तकें सोचने-समझने के तरीकों को भी समृद्ध बनाती हैं। इन सभी की पढ़ने में रुचि पैदा करना ही एक प्रमुख लक्ष्य है। ज्यादातर भाषा-शिक्षण व साहित्य का उद्देश्य बच्चे के विकास व समाज के साथ उसके संबंध को गहरा करना व उसके सोचने व जीवन दर्शन को वृहद् करना है। इस लक्ष्य को पूरा करने के लिए यह आवश्यक है कि बच्चे अच्छे साहित्य को पढ़ें-लिखें और उस पर बातचीत करें। बच्चों का पुस्तक की सामग्री के साथ संबंध गहरा होए उनके बीच एक सतर्क पाठक का रिश्ता बने। इसके लिए वे पाठों पर आधारित नए प्रश्न बनाएँ व अपने जीवन के अनुभवों के आधार पर सामग्री में प्रस्तुत विचारों पर टिप्पणी करें।

कक्षा आठवीं के बच्चों से यह भी अपेक्षा है कि वे पाठ्यपुस्तक में प्रस्तुत विचारों तथा घटनाओं के वर्णनों आदि के बारे में सोचें-विचारें, सवाल करें और अपनी राय बनाएँ। यह सब करना कुछ हद तक संभव है। कक्षा आठवीं में हम यह भी अपेक्षा करते हैं कि बच्चे समूहों में अब ज्यादा बार खुद पढ़कर व चर्चा करके सीखें और अपनी समझ को पुख्ता करें। हमारी कोशिश है कि भाषा की पुस्तक के माध्यम से नए अनुभवों व विचारों से रू-ब-रू होने का व उन्हें अहसास करने का एक जीवंत अनुभव मिले।

शिक्षा का अधिकार अधिनियम 2009 बच्चों को गुणवतायुक्त शिक्षा देने पर जोर देता है। एन.सी.ई.आर.टी.,नई दिल्ली द्वारा कक्षा 1.8 तक के बच्चों हेतु कक्षावार, विषयवार अधिगम प्रतिफलों का निर्माण कर सुझावात्मक शिक्षण प्रक्रियाओं का उल्लेख किया है। जिससे बच्चों के सर्वांगीण विकास के लक्ष्य को प्राप्त किया जा सकेगा। पुस्तकों में समयानुसार संशोधन तथा परिवर्धन एक निरंतर प्रक्रिया है। अतः सत्र 2018.19 हेतु पुस्तकों को समसामायिक तथा प्रासंगिक बनाया गया है। जिससे बच्चों को वांछित उपलब्धि प्राप्त करने के अधिक अवसर उपलब्ध होंगे। आशा है कि पुस्तकें शिक्षक साथियों तथा बच्चों को लक्ष्य तक पहुँचने में मददगार होंगी।

इस पुस्तक को तैयार करने में शिक्षाविदों, शिक्षकों, शिक्षक प्रशिक्षकों का सक्रिय सहयोग एवं मार्गदर्शन प्राप्त हुआ। इसके बावजूद पुस्तक में सुधार करने और जोड़ने की संभावनाएँ तो सदैव रहेंगी।

इस पुस्तक को और बेहतर बनाने के लिए आप अपने बहुमूल्य सुझाव परिषद् को भेजेंगे, ऐसी हमारी उम्मीद है। शुभकामनाओं के साथ।

संचालक

राज्य शैक्षिक अनुसंधान एवं प्रशिक्षण परिषद् छतीसगढ़, रायपुर

शिक्षकों के लिए

छत्तीसगढ़ राज्य शैक्षिक अनुसंधान एवं प्रशिक्षण परिषद् के मार्गदर्शन में कक्षा आठवीं के लिए बनी हिन्दी की नवीन पुस्तक आपके सामने है। पुस्तक बनाने में राष्ट्रीय शिक्षाक्रम पाठ्यचर्या की रूपरेखा 2005-को भी ध्यान में रखा गया है। पुस्तक में विषयगत एवं विधागत विविधता के साथ-साथ बच्चों की जिंदगी से जुड़े अनुभवों को ध्यान में रखकर सामग्री को संकलित किया गया है। ये पाठ साहित्य की विविध विधाओं-कविता, कहानी, वर्णन, नाटक, निबंध, पत्र, डायरी, आत्मकथाए जीवनी, संस्मरण, यात्रा वर्णन आदि के रूप में संकलित हैं। साहित्य की सभी विधाओं को शामिल किया जा सके, ऐसा कर पाना इस स्तर पर और एक पुस्तक में संभव नहीं है। अतः यह अपेक्षा है कि आप अन्य विधाओं की पुस्तकों को पढ़ने के लिए बच्चों को प्रेरित करेंगे। पुस्तक में संकलित पाठों पर काम करने के लिए बच्चों के बीच संवाद, चर्चा, समूह चर्चा, मौखिक कथन, वाचन, अभिनय, समीक्षा, मौलिक लेखनए सृजनकार्य आदि गतिविधियाँ प्रस्तावित की गई हैं। हमारी आपसे यह अपेक्षा है कि आप पूर्णतया इसी पुस्तक पर निर्भर न रहें। पुर्निक पर निर्भर न रहें। पुर्निक पर निर्भर न रहें। पुर्मिक पर निर्भर न रहें। पुर्मिक पर निर्भर न रहें। पुर्मिक पर निर्मर न रहें। पुर्मिक पर निर्मर न रहें। पुर्मिक पर निर्भर न रहें। पुर्मिक पर निर्भर न रहें। पुर्मिक पर निर्मर न रहें। पुर्म न पर निर्मर न रहें। पुर्म न रहें। पुर्म न रहें। पुर्म न पर निर्मर न रहें। पुर्म न रहें

हमारी अपेक्षा है कि इस पुस्तक के उपयोग से बच्चे भाषा में रुचि बना पाएँगे और कक्षा 8 के अंत तक वे अपने मन से नई-नई कहानियाँ ए कविताएँ, नाटक आदि पढ़ने लगेंगे और उन पर परस्पर चर्चा कर सकेंगे। भाषा सीखने-सिखाने के बारे में सोचते समय हमें यह ध्यान रखना चाहिए कि बच्चे आस-पास के वातावरण व दुनिया को जानना व समझना चाहते हैं। हमें यह प्रयास करना है कि उनकी दृष्टि व अनुभूति अधिक संवेदनशील व गहरी हो। सामाजिक यथार्थ के बहुत बड़े हिस्से को गहराई से देखने की क्षमता हमें साहित्य से ही मिलती है। इसलिए हमारा यह प्रयास होना चाहिए कि पाठ्यपुस्तक के अतिरिक्त हम उन्हें कुछ अन्य सामग्री पढ़ने को दें।

इस स्तर के बच्चे स्वतंत्र रूप से पढ़ने-लिखने में आत्मिनभर हो चुके होते हैं। अब इन बच्चों को दी गई सामग्री पर स्वतंत्र रूप से काम करने के अवसर और नई चुनौतियाँ दिए जाने की जरूरत है। आपकी भूमिका एक मददगार के रूप में होनी है। सीखना स्वयं करने से ही होता है, अतः बच्चों को इसके लिए अधिक-से-अधिक मौका मिले।

इस स्तर के बच्चों की भाषायी क्षमताओं को आगे बढ़ाने हेतु यह पुस्तक एक आधार सामग्री के रूप में है। यहाँ उद्देश्य यह है कि बच्चे अच्छे लेखकों और कवियों द्वारा रचे गए साहित्य को पढ़ें और उस पर चिंतन मनन करें। भाषाशिक्षण का उद्देश्य बच्चों को एक अच्छा पाठक बनाने के साथ-साथ सोचने-विचारनेए चिंतन करने, विचारों को विस्तारित करने, कल्पना करने तथा नई बातें खोजनेए तर्क समझने आदि के लिए तैयार करना है।

यह भी अपेक्षा है कि बच्चा न सिर्फ पुस्तक की सामग्री को गहराई से समझकर उसकी विवेचना कर सके वरन् किसी भी सामग्री पर गहरे रूप से विचार करने व अध्ययन करने की क्षमता विकसित कर सकें।

इस पुस्तक की पाठ्य-सामग्री में विविधता इसिलए रखी गई है कि बच्चे हर प्रकार की सामग्री का परिचय पा सकें व उसका रस ले सकें। इस पुस्तक में अभ्यास उदाहरणस्वरूप दिए गए हैं। आप इन्हें विस्तारित कर सकते हैं। कक्षा 5 तक की पुस्तकों में हमने प्रत्येक पाठ में नए प्रश्न बनाकर मौखिक रूप में परस्पर प्रश्न पूछने और उत्तर देने के अभ्यास करवाए हैं। इस पुस्तक में भी कई जगह यह गतिविधि कराने के लिए इंगित किया गया है। बच्चे भी सोचकर सवाल बनाएँ तो उनकी पढ़ पाने की क्षमता सुदृढ़ होगी।

बच्चों की पढ़ने की क्षमता बढ़ाने व पाठ के बारे में गहरे रूप से विचार करने की समझ पैदा करने के लिए आवश्यक है कि उसे सवालों के रूप में कुछ ऐसे स्रोत मिलें जो पाठ को समझने में उसकी मदद करें। पाठ के अंत में दिए गए प्रश्न पाठ की समझ का एक हद तक मूल्यांकन कर सकते हैं। किन्तु इन प्रश्नों का वास्तविक उद्देश्य बच्चों में पढ़ने व समझने की एक कोशिश पैदा करना है। प्रश्नों के कुछ उदाहरण पाठ में दिए गए हैं। कृपया आप स्वयं पाठ पढ़ाते समय और भी प्रश्न बनाएँ।

बच्चों से भी प्रश्न बनाने का कार्य करवाएँ। शुरू में वे नए मौखिक प्रश्न बनाकर एक-दूसरे से पूछ सकते हैं। धीरे-धीरे ये सवाल गहरे होते जाएँगे। बाद में उन्हें लिखित प्रश्न बनाने के लिए भी प्रेरित करें। इनमें से कुछ तो सूचना आधारित प्रश्न हो सकते हैं। ऐसे प्रश्नों के उत्तर सीधे पाठ से खोजे जा सकते हैं। कुछ कार्यकारण संबंध वाले प्रश्न हो सकते हैं तथा कुछ कल्पनात्मकता व सृजनात्मकता वाले प्रश्न भी होंगे। इन प्रश्नों का जवाब बच्चे अपनी भाषा में लिखें तो ज्यादा अच्छा होगा।

कुछ प्रश्न पूर्ण सामग्री को समझकर उसके आधार पर हो सकते हैं या उसका सार लिखने जैसे और कुछ ऐसे भी हो सकते हैं, जो पाठ्य सामग्री में व्यक्त विचारों के बारे में टिप्पणी माँगें। अर्थ समझना पढ़ने का सबसे महत्वपूर्ण हिस्सा है और उसी में पारंगत करना पुस्तक का एक लक्ष्य होगा।

कक्षा आठ में जिन अभ्यासों पर जोर दिया गया है, वे हैं-

- पढ़ी गई सामग्री का सार लिखना।
- सामग्री पर अपने अनुभवों के आधार पर टिप्पणी करना।
- सन्दर्भ से शब्दों को अर्थ देना व नए वाक्य बनाना।
- कहानी पढ़कर समझना और समूह में उस पर नाटक तैयार करना।
- दी गई सामग्री के आधार पर कल्पना करना, जैसे यदि ऐसा नहीं होता तो क्या होता।
- सामग्री में दिए गए घटनाक्रम. विवरण, कथन को आगे बढाना व उसे और विस्तार देना।
- सामग्री में दिए गए तर्कों के आधार पर या उस जैसे तर्क सोचना व पाठ जैसे पैराग्राफ बनाना।

ये मात्र उदाहरण हैं। इनके अलावा भी और बहुत प्रकार के अभ्यास आप सोच सकते हैं। सरल पाठ पर आधारित सवाल बनाने में तो बच्चों को भी मजा आएगा।

इसके अलावा कुछ और बातें भी महत्वपूर्ण हैं। व्याकरण भाषा का हिस्सा है। वह भाषा को एक ऐसा ढाँचा देता है जिसके चलते हम एक दूसरे की बात समझ पाते हैं। व्याकरण का अहसास करना, उसके नियमों को खँगालना भाषा को समझने में मदद करता है। व्याकरण के अधिकांश नियम प्रयोग करते समय उभरते हैं। हम बच्चों को पाठ के कुछ वाक्य लेकर उनमें निहित नियम पहचानने को कह सकते हैं। इस पुस्तक में भाषातत्व और व्याकरण के अंतर्गत इसी प्रकार के प्रश्न दिए गए हैं। विराम चिह्नों का प्रयोग भाषा को समृद्ध बनाता है। केवल निर्धारित परिभाषाएँ व नियम याद करना व्याकरण नहीं हैए वरन भाषा को समझने व उसकी समृद्धि के अहसास की राह में कदम है।

कक्षा6, 7और 8 की पुस्तकों में हमने शब्दार्थ पाठ के अंत में भी दिया गया है तथा शब्दकोश के रूप में पुस्तक के अंत में दिए हैं। हमारा विचार है कि इससे बच्चों को शब्दकोश देखना आएगा। शब्दकोश में हमने जगह-जगह रिक्त स्थान छोड़े हैं और प्रत्येक वर्ण से प्रारंभ होने वाले शब्दों के अंत में चौखाने में कुछ शब्द डाले हैं। इन शब्दों को शब्दकोश के क्रम से उन रिक्त स्थानों में भरकर इनके अर्थ लिखने हैं। आपको यह देखना है कि बच्चे यह गतिविधि नियमित रूप से करें। ये शब्द अधिकांशतः ऐसे हैं जो वे पूर्व में पढ़ चुके हैं। जिन शब्दों के अर्थ बच्चे नहीं जानते, उन्हें आप बता सकते हैं। शब्द भंडार में वृद्धि करने के लिए यह गतिविधि लाभदायक सिद्ध होगी।

एक और बात कहना आवश्यक है। जब भी हम किसी पाठ को पढ़ते हैं तो उसमें छिपे भावार्थ की समझ सबके लिए एक जैसी नहीं होती। एक ही कहानी सबको अच्छी भी नहीं लगती और उसका अर्थ भी सब एक जैसा नहीं निकालते। किंतु पढ़ने वालों की सदैव यह कोशिश होनी चाहिए कि वह न सिर्फ अपनी समझ जाने व उसे व्यक्त करें, वरन् लेखक की बात उसके नजिर्यें से देख पाएँ और यह जान पाएँ कि लेखक क्या कहना चाहता है। बच्चों को इस तरह के प्रयास करने के मौके देना भी आवश्यक होगा।

आपके जो भी सुझाव हों और जो नए अभ्यास आप बनाएँ उन्हें हमें लिख भेजें।

धन्यवाद।

संचालक

राज्य शैक्षिक अनुसंधान एवं प्रशिक्षण परिषद् छतीसगढ़, रायपुर

विषय-सूची

अध्याय	एक	:	संख्याएँ: पुनरावृत्ति		1 - 20
अध्याय	दो	:	परिमेय संख्याएँ		21 - 33
अध्याय	तीन	:	त्रिभुज के गुण		34 - 46
अध्याय	चार	:	समीकरण	(#####################################	47 - 59
अध्याय	पांच	:	कोष्ठकों का प्रयोग		60 - 69
अध्याय	छ:	:	घंटाक		70 - 80
अध्याय	सात	:	त्रिभुजों की रचना	5LBY8B	81 - 89
अध्याय	आठ	:	सर्वांगसमता		90 - 111
अध्याय	नौ	:	बीजीय व्यंजकों पर संक्रियाएँ		112 -118
अध्याय	दस	:	आरेख		119 - 132
अध्याय	ग्यारह	:	परिमेय संख्याओं का दशमलव निर	त्पण	133 - 149
अध्याय	बारह	:	कोण, रेखीय युग्म एवं तिर्यक रेखाएँ	τ 	150 - 173
अध्याय	तेरह	:	चतुर्भुज		174 - 186
अध्याय	चौदह	:	समानुपात		187 - 192
अध्याय	पन्द्रह	:	क्षेत्रफल		193 - 202
अध्याय	सोलह	:	प्रतिशतता		203 - 224
अध्याय	सत्रह :		सांख्यिकी		225 - 242
अध्याय	अठारह	:	सममिति		243 - 257
			उत्तरमा ला		256 - 268

अध्याय एक

संख्याएँ : पुनरावृत्ति (Numbers : Revision)

आपने पिछली कक्षाओं में प्राकृत पूर्ण, पूर्णांक, भिन्न संख्याओं के बारे में पढ़ा है। इनकी उपयोगिता को देखते हुए संख्याओं की पुनरावृत्ति करना हमारे आगे के अध्ययन में सहायक होगा-

प्राकृत संख्याएँ

गणना के लिए उपयोग की जाने वाली संख्याएँ प्राकृत संख्याएँ कहलाती हैं। प्राकृत संख्याओं के समूह को छ से व्यक्त करते हैं। अर्थात्

N = 1, 2, 3, 4, 5..... इत्यादि

किसी प्राकृत संख्या में 1 जोड़ने पर उसकी परवर्ती व 1 घटाने पर उसका पूर्ववर्ती मिलता है।

5 का परवर्ती = **5**+1

= 6

5 का पूर्ववर्ती = 5-1

= 4

प्रत्येक प्राकृत संख्या का एक परवर्ती होता है। 1 को छोड़कर प्रत्येक प्राकृत संख्या का एक पूर्ववर्ती होता है।

पहली तथा सबसे छोटी प्राकृत संख्या 1 है। कोई भी संख्या सबसे बडी अथवा अंतिम प्राकृत संख्या नहीं है।

प्राकृत संख्याओं के गुण

- दो प्राकृत संख्याओं का आपस में योग करने से या गुणा करने पर प्राकृत संख्या ही प्राप्त होती है।
- 2. दो प्राकृत संख्याओं का आपस में व्यवकलन (घटाना) या भाग करने से सदैव प्राकृत संख्या प्राप्त नहीं होती है।
- 3. दो प्राकृत संख्याओं को किसी भी क्रम में जोड़ सकते है। दो प्राकृत संख्याओं को किसी भी क्रम में गुणा कर सकते हैं। अर्थात प्राकृत संख्याओं के लिए क्रमविनिमय का नियम योग व गुणन संक्रिया में लागू होता है जबकि घटाने एवं भाग संक्रिया पर लागू नहीं होता।
- 4. प्राकृत संख्याओं के लिए साहचार्य नियम योग एवं गुणा संक्रिया में लागू होता है जबकि घटाने एवं भाग संक्रिया में लागू नहीं होता।
- 5. प्राकृत संख्याओं के लिए गुणा का योग व अन्तर पर बंटन (वितरण) होता है।
- 6. किसी प्राकृत संख्या में एक से गुणा या भाग करने पर संख्या का मान नही बदलता।
 - 1. (i) (a+b) एक प्राकृत संख्या है।
 - (ii) ' (axb) एक प्राकृत संख्या है।
 - 2 (i) a-b सदैव एक प्राकृत संख्या हो आवश्यक नहीं है।
 - (ii) a÷ b सदैव एक प्राकृत संख्या हो, जरूरी नही

- 3. (i) a+b = b+a
 - (ii) axb = bxa
 - (iii) a-b=b-a $(a\neq b)$
 - (iv) $a \div b \neq b \div a$ $(a \neq b)$
- 4 (i) a+(b+c) = (a+b)+c
 - (ii) ax(bxc) = (axb)xc
 - (iii) $a-(b-c) \neq (a-b)-c$
 - (iv) $\mathbf{a} \div (\mathbf{b} \div \mathbf{c}) \neq (\mathbf{a} \div \mathbf{b}) \div \mathbf{c}$ $(a \neq b \neq c \neq 1)$
- 5 (i) ax(b+c) = (axb)+(axc)
 - (ii) ax(b-c) = (axb)-(axc) [b>c]
- 6 (i) qx1 = 1xq = q
 - (ii) $a \div 1 = a$

पूर्ण संख्याएँ

प्राकृत संख्याओं के समूह में शून्य को शामिल कर लेने पर पूर्ण संख्याओं का समूह प्राप्त होता है। पूर्ण संख्याओं के समूह को W से प्रदर्शित करते हैं। अर्थात्

W = 0, 1, 2, 3, 4, 5, 6, इत्यादि

प्रत्येक पूर्ण संख्या का एक परवर्ती होता है। o को छोड़कर प्रत्येक पूर्ण संख्या का एक पूर्ववर्ती होता है।

पहली तथा सबसे छोटी पूर्ण संख्या 0 है।

कोई भी संख्या सबसे बड़ी अथवा अन्तिम पूर्ण संख्या नही है।

सभी प्राकृत संख्याएँ पूर्ण संख्याएँ भी हैं। लेकिन सभी पूर्ण संख्याएँ, प्राकृत संख्याएँ नहीं हैं।

पूर्ण संख्याओं के

- 1. प्राकृत संख्याओं के सभी गुण पूर्ण संख्याओं के लिए भी सही हैं।
- 2. किसी पूर्ण संख्या में शून्य को जोड़ने या घटाने पर संख्या का मान नहीं बदलता। शून्य को योग के लिए तत्समक अवयव (योज्य तत्समय अवयव) कहते हैं।
- 3. किसी भी पूर्ण संख्या में 1 से गुणा करने पर संख्या का मान नहीं बदलता। 1 को गुणन के लिए तत्समक अवयव (गुणन तत्समक अवयव) कहते हैं।
- 4. शून्य में किसी पूर्ण संख्या का भाग देने पर भागफल शून्य ही रहता है। जबकि किसी पूर्ण संख्या में शून्य से भाग देना अपरिभाषित है।

पूर्णांक संख्याएँ

धनात्मक संख्याएँ, ऋणात्मक संख्याएँ और शून्य को मिलाने से बना संग्रह पूर्णांक संख्याओं का समूह होता है। पूर्णांक संख्याओं को प् यी द्वारा प्रदर्शित करते हैं। अर्थात्

पूर्णांक संख्याओं के गुण

- 1. पूर्ण संख्याओं के सभी गुण पूर्णांक संख्याओं के लिए भी सही होते हैं।
- 2. पूर्णांक संख्याओं के योग, अंतर व गुणा पर संवरक गुण (नियम) लागू होता है। अर्थात् दो पूर्णांकों का योग अंतर व गुणा सदैव एक पूर्णांक संख्या होती है।
- पूर्णांक के भाग पर सदैव संवरक गुण लागू नही होता है अर्थात दो पूर्णांकों का भाग करने पर सदैव पूर्णांक संख्या नही मिलती है।
- 4. दो धनात्मक पूर्णांको का योगफल सदैव धनात्मक पूर्णांक तथा दो ऋणात्मक पूर्णांको का योगफल सदैव ऋणात्मक पूर्णांक होता है।
- 5. एक धनात्मक एवं एक ऋणात्मक पूर्णांक का योगफल धनात्मक पूर्णांक होगा यदि धनात्मक पूर्णांक का आंकिक मान अधिक हो तथा योगफल ऋणात्मक होगा यदि ऋणात्मक पूर्णांक का आंकिक मान अधिक हो।
- 6. किसी ऋणात्मक संख्या का योज्य प्रतिलोम धनात्मक व धनात्मक संख्या का योज्य प्रतिलोम ऋणात्मक संख्या होती है।
- 7. किसी धनात्मक पूर्णांक को किसी ऋणात्मक पूर्णांक के साथ गुणा करने पर गुणनफल ऋणात्मक पूर्णांक प्राप्त होता है।
- 8. दो धनात्मक पूर्णांको या दो ऋणात्मक पूर्णांको का गुणा करने पर धनात्मक पूर्णांक प्राप्त होता है।
- 9. शून्य को छोड़कर प्रत्येक पूर्णांक में उसी पूर्णांक का भाग देने भागफल हमेशा 1 आता है।
- 10.शून्य को छोड़कर प्रत्येक पूर्णांक को उसके योज्य प्रतिलोम से भाग देने पर भागफल .1 प्राप्त होता है।
- 11. शून्य का गुणन प्रतिलोम अस्तित्व नहीं रखता है।

प्राकृत, पूर्ण व पूर्णांको के गुण

संख्या		योग संक्रि	या	,	अंतर संद्रि	क्रेया	į	गुणन संवि	क्रेया	भाग स		
गुण	संवरक	क्रम विनिमय	साहचार्य	संवरक	क्रम विनिमेय	साहचार्य	संवरक	क्रम विनिमेय	साहचार्य	संवरक	क्रम विनिमेय	साहचार्य
प्राकृत	V	V	√	X	X	X	V	V	V	X	X	X
पूर्ण	1	$\sqrt{}$	$\sqrt{}$	X	X	X	$\sqrt{}$	$\sqrt{}$	√	X	X	X
पूर्णांक	√	$\sqrt{}$	$\sqrt{}$	1	X	X	√	$\sqrt{}$	√	X	X	X

ञ्जिक्रयाकलाप- १

नीचे तालिका में पूर्णांक संख्याओं को योग व अंतर करके दिखाया गया है। कुछ रिक्त स्थान तालिका में हैं, उनकी पूर्ति कीजिए-

क्र	पहला	दूसरा	पहला + दूसरा	योगफल पूर्णांक	पहला – दूसरा	अंतर पूर्णांक
	पूर्णांक	पूर्णांक	पूर्णांक	है या नहीं	पूर्णांक	है या नहीं
1.	5	3	5 + 3 = 8	है	5 - 3 = 2	है
2.	- 7	2	-7 + 2 = - 5	है	−7−2 =−9	है
3.	- 4	- 6	(-4)+(-6)=-10	है	(-4)-(-6)= -4	है
					-4 + 6 = 2	
4.	13	- 5				
5.	- 9	- 16				
6.	102	- 9				

🗻 क्रियाकलाप- 2

पूर्णांकों के योग की सारणी पूर्ण कीजिए

$$(-4) + (-4) = -8$$

+	<u> 4 </u>	-3	-2	-1	0	1	2	3	4
<u>4</u>	-8	_ 7	-6	- 5	-4	-3	-2	-1	0
	-3	_7	-6	- 5					
	-2	-6							
	-1	- 5							
	0	– 4							
	1	-3							
	2	-2							
	3	-1							
	4	0							

बताइए कि निम्न कथन सत्य हैं या असत्य?

$$(-4) + (-3) = (-3) + (-4)$$

$$3 + (-2) = (-2) + 3$$

🔪 क्रियाकलाप- 3

पूर्णांकों के अंतर (A-B) की सारणी पूर्ण कीजिए .

$$(-4) - (-3) = -4 + 3 = -1$$

$$(-4) - (-2) = -4 + 2 = -2$$

	B->								
	_	- 3	- 2	– 1	0	1	2	3	4
	-4	- 1	-2	- 3	-4	-5	-6	-7	- 8
	-3	0	- 1						
A↓	-2	1							
	-1	2							
	0	3							
	1	4							
	2	5							
	3	6							
	4	7							

बताइए कि निम्न कथन सत्य हैं या असत्य ?

🗪 क्रियाकलाप- ४

नीचे तालिका में पूर्णांक संख्याओं का गुणा करके गुणनफल का निष्कर्ष दिखाया गया है। कुछ रिक्त स्थान तालिका में हैं, उनकी पूर्ति कीजिए

क्र.	प ह ली संख्या	दूसरी संख्या	पहली संख्या × दूसरी संखया	गुणनफल	निष्कर्ष
01	4	3	4 × 3	12	दो धनात्मक पूर्णांको का गुणनफल एक धनात्मक पूर्णांक होता है।
02	- 7	-2	(-7) × (-2)	14	दो ऋणात्मक पूर्णांको का गुणनफल एक धनात्मक पूर्णांक होता है।

0.0			() ()	40	
03	- 6	3	(-6) × (+3)	- 18	एक धनात्मक
					पूर्णांक और एक
					ऋणात्मक पूर्णांक का
					गुणनफल एक
					ऋणात्मक पूर्णांक
					होता है।
04	5	-4			
05	-8	-3			
06	-13	6			
07	16	-20			

🔪 क्रियाकलाप- 5

नीचे दी गई सारणीं में पूर्णींकों के गुणा^पदिए गए हैं। कुछ रिक्त स्थान तालिका में हैं, उनकी पूर्ति कीजिए l

×	-4	-3	-2	-1	0	1	2	3
4	-16	-12	-8	-4	0		8	12
3	-12	_9	-6	-3	0			
2								
1								
0								
-1								
-2								
-2								
-3								
-4								

आप पूर्णांक संख्याओं के भाग से परिचित हैं। आप जानते हैं कि भाग संक्रिया, गुणन संक्रिया की विपरीत संक्रिया है।

क्रियाकलाप- ६

नीचे तालिका में एक गुणन तथ्य तथा उसके संगत दो भाग तथ्य दिए गए हैं। कुछ रिक्त स्थान तालिका में हैं, उनकी पूर्ति कीजिए।

क्र.	गुणन तथ्य		संगत भाग तथ्य
1.	$3\times 5=15$	$15 \div 3 = 5$	$15 \div 5 = 3$
2.	$-8 \times 6 = -48$	$(-48) \div 6 = -8$	$(-48) \div (-8) = 6$
3.	$-5 \times -6 = 30$	$30 \div -5 = -6$	
4.		$(-54) \div 6 = ?$	$(-54) \div (-9) = ?$
5.	7×-3= -21	,	$(-21) \div (-3) = 7$

्रिक्रियाकलाप- 7

नीचे दिए गए रिक्त स्थानों की पूर्ति कीजिए -

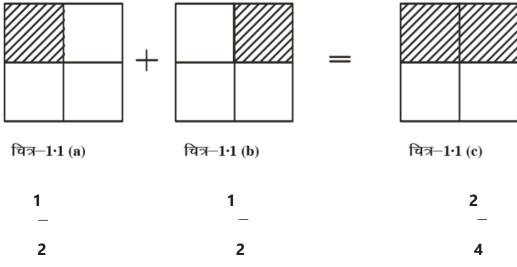
- (1) एक धनात्मक पूर्णांक को दूसरे धनात्मक पूर्णांक से भाग देने पर भागफल पूर्णांक होता है।
- (2) एक ऋणात्मक पूर्णांक को दूसरे ऋणात्मक पूर्णांक से भाग देने पर भागफलपूर्णांक होता है।
- (3) एक ऋणात्मक पूर्णांक को दूसरे धनात्मक पूर्णांक से भाग देने पर भागफलपूर्णांक होता है।
- (4) एक धनात्मक पूर्णांक को दूसरे ऋणात्मक पूर्णांक से भाग देने पर भागफलपूर्णांक होता है।

भिन्न

- 1. संख्या p/q जहाँ p और q धनात्मक पूर्णांक हैं, भिन्न कहलाती है।
- एक भिन्न अपने सरलतम रुप (न्यूनतम) में होगी यदि उसके अंश तथा हर में 1 के अलावा कोई दूसरा अभयनिष्ठ गुणनखंड न हो ।
- 3. जिन भिन्नों का हर, अंश से बड़ा हो, वे उचित भिन्न कहलाती हैं।
- जिन भिन्नों का हर, अंश से छोटा हो, वे अनुचित या विषम भिन्न कहलाती हैं।
- 5. विषम भिन्न को एक पूर्ण और एक भाग के रुप में भी लिखा जा सकता है तब ये मिश्र भिन्न कहलाती है।
- जो भिन्नें समान मात्रा को प्रदर्शित करती हैं, तुल्य भिन्नें कहलाती हैं।
- किसी भी भिन्न के अंश व हर में शून्य के अलावा अन्य किसी समान संख्या से गुणा या भाग करके उसे समतुल्य भिन्न में बदला जा सकता है।

- 8. समान हर वाली भिन्नों को जोड़ने के लिए उनके अंशों को जोड़कर लिखते हैं तथा हर को पहले जैसा ही लिखते हैं।
- 9. असमान हर वाली भिन्नें को जोड़ने के लिए पहले इन्हें तुल्य भिन्नों में बदल कर समान हर वाली भिन्न बना लेते हैं। इसके लिए भिन्नों के हरों का लघुत्तम समापवर्त्य निकालते हैं, फिर समान हर वाली भिन्नों को जोड़ने की क्रिया करते हैं।
- 10. मिश्र भिन्नों को जोड़ना -

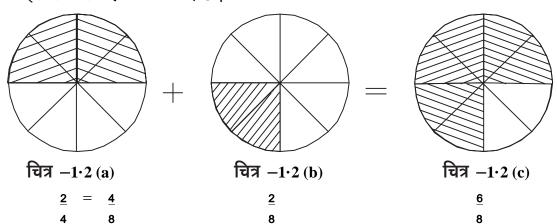
पहला तरीका-


- मिश्र भिन्नों को विषम भिन्नों में बदलते हैं।
- उन्हें लघुत्तम निकालकर समान हर वाली समतुल्य विषम भिन्न में बदल लेते हैं।
- 3. समान हर वाली भिन्नों को जोडने की क्रिया करते हैं।

दूसरा तरीका-

- मिश्र भिन्नों के पूर्णांको का योग करते हैं।
- उनके भिन्नात्मक भागों का योग ज्ञात करते है।
- पूर्णांको के योग एवं भिन्नात्मक भागों के योग का योगफल ज्ञात करते हैं।
- 11. भिन्नों के घटाने की क्रिया उनके जोड़ने की क्रिया के समान ही है अंतर केवल इतना है कि उन्हें जोड़ने के स्थान पर पहली भिन्न में से दूसरी भिन्न को घटाने की संक्रिया करते हैं।
- 12. जब दो भिन्नों का गुणा करते हैं तो उनके अंश का अंश से एवं हर का हर से गुणा हो जाता है।
- 13. जब एक भिन्न को दूसरी भिन्न से भाग दिया जाता है तो भाजक की भिन्न संख्या को उलटकर भाज्य की भिन्न संख्या में गुणा हो जाता हैं।

भिन्नों का योग: चित्रात्मक निरूपण

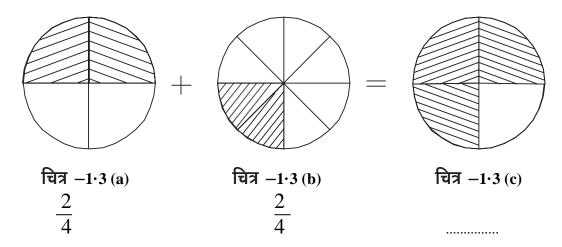

दिए गए चित्रों को ध्यान से देखें।

इसे इस प्रकार लिख सकते हैं -

$$\frac{1}{4}$$
 + $\frac{1}{4}$ = $\frac{2}{4}$

इसी प्रकार निम्न चित्रों को देखिए -

4 8


$$.=\frac{2+2}{4+2}=\frac{2}{8}$$

$$=\frac{4}{8}+\frac{2}{8}$$

$$=\frac{4+2}{8}$$

$$=\frac{6}{8}$$

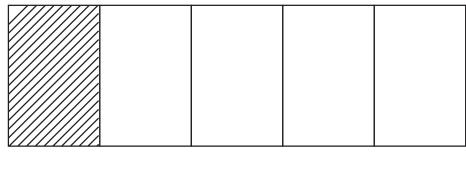
अब आप बताइए -

🔪 क्रियाकलाप- ८

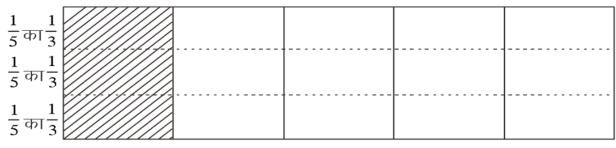
आगे दी गई तालिका में भिन्नों का जोड़ना एवं घटाना करके दिखाया गया है। कुछ रिक्त स्थान तालिका में हैं, उनकी पूर्ति कीजिए।

क्र.	प्रश्न	हरों का ल.स	भिन्नों को प्राप्त ल.स. वाली समहर भिन्नों में बदलने पर	समहर भिन्नों के अंशों का योगफल	हल	सरलतम भिन्न
1.	$\frac{2}{3} + \frac{4}{5}$	15	$\frac{10}{15} + \frac{12}{15}$	10+12=22	$\frac{22}{15}$	$\frac{22}{15}$
2	$\frac{3}{4} + \frac{1}{2} + \frac{2}{5}$	20	$\frac{15}{20} + \frac{10}{20} + \frac{8}{20}$	15+10+8=33	$\frac{33}{20}$	$\frac{33}{20}$
3	$\frac{4}{7} - \frac{2}{5}$	35	$\frac{20}{35} - \frac{14}{35}$	20-14=6	$\frac{6}{35}$	$\frac{6}{35}$
4	$\frac{7}{10} - \frac{3}{15} + \frac{1}{2}$					
5	$\frac{1}{3} + \frac{3}{5} - \frac{8}{12}$					

अभन्नों का गुणा: चित्रात्मक निरूपण


आइए $\frac{1}{5} \times \frac{1}{3}$ की चर्चा करें

 $\frac{1}{5} \times \frac{1}{3}$ के हम $\frac{1}{5}$ का $\frac{1}{3}$ भी कह सकते हैं।


$$\frac{1}{5} \times \frac{1}{3}$$
 भाग को $\frac{1}{5}$ प्रदर्शित करना.—

 $\frac{\frac{1}{5} \times \frac{1}{3}}{3}$ भाग को $\frac{1}{5}$ प्रदर्शित करना.— इसके लिए एक इकाई को 5 समान भागों में बाँटिए। प्रत्येक भाग को प्रदर्शित करता है। एक भाग को रेखांकित कीजिए।

चित्र -1∙4

अब इसका $\frac{1}{3}$ मालूम करना है। अतः रेखांकित भाग के 3 समान हिस्से कीजिए। प्रत्येक हिस्सा $\frac{1}{5}$ के $\frac{1}{3}$ को प्रदर्शित करता है

चित्र -1⋅5

प्रत्येक रेखांकित हिस्सा $\frac{1}{5}$ का $\frac{1}{3}$ है, जो पूरी इकाई का है।

चित्र -1.6

इस प्रकार स्पष्ट है कि किसी इकाई का $\frac{1}{5} \times \frac{1}{3}$ का $\frac{1}{15}$ मान इकाई का भाग होता है। इसे हम इस प्रकार भी देख सकते हैं

$$\frac{1}{5} \times \frac{1}{3} = \frac{1 \times 1}{5 \times 3}$$
$$= \frac{1}{15}$$

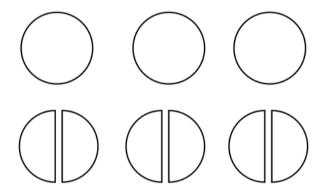
हम पाते हैं कि जब दो भिन्नों का गुणा होता है तब अंश का अंश के साथ तथा हर का हर के साथ गुणा हो जाता है। जैसे –

$$\frac{3}{7} \times \frac{2}{5} = \frac{3 \times 2}{7 \times 5} = \frac{6}{35}$$
$$\frac{2}{3} \times \frac{7}{8} = \frac{2 \times 7}{3 \times 8} = \frac{14}{24} = \frac{7}{12}$$

भूत्रों का गुणा: चित्रात्मक निरूपण

6 ÷2 का अर्थ है 6 में दो दो के कितने समूह हैं ;या 6 में 2 कितनी बार सम्मिलित है देखें.

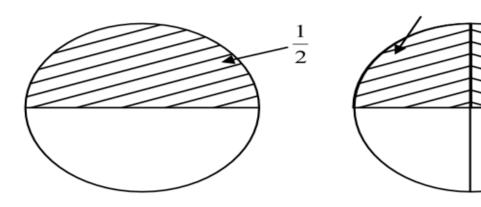
चित्र -1∙7


6 में दो दो के तीन समूह हैं।

$$6 \div 2 = 3$$

अब पता करें

$$3 \div \frac{1}{2} = ?$$


 $3 \div \frac{1}{2}$ का अर्थ है 3 में $\frac{1}{2}$ कितनी बार (सिम्मिलित) है, अथवा 3 में $\frac{1}{2}$ वाले कितने टुकड़े हैं ?

चित्र -1.9

स्पष्ट है कि 3 में $\frac{1}{2}$ वाले 6 दुकड़े होंगे। प्रत्येक दुकड़ा $\frac{1}{2}$ है। $3 \div \frac{1}{2} = 6$

इसी प्रकार $\frac{1}{2} \div \frac{1}{4}$ का क्या अर्थ है ।

चित्र-1∙9

आप पाएंगे कि-

$$\frac{1}{2}$$
 में $\frac{1}{4}$ दो बार (सिम्मिलित) है।

$$\frac{1}{2} \div \frac{1}{4} = 2$$

दो भिन्नों के भाग को हम इस प्रकार भी देख सकते हैं।

$$6 \div 2 = \frac{6}{1} \div \frac{2}{1} = \frac{6}{1} \times \frac{1}{2} = \frac{6}{2}$$
$$3 \div \frac{1}{2} = \frac{3}{1} \div \frac{1}{2} = \frac{3}{1} \times \frac{2}{1} = \frac{6}{1} = 6$$
$$\frac{1}{2} \div \frac{1}{4} = \frac{1}{2} \times \frac{4}{1} = \frac{4}{2} = 2$$

इस प्रकार जब एक भिन्न को दूसरी भिन्न से भाग दिया जाता है तब भाजक की भिन्न संख्या उलट दी जाती है अर्थात् भाजक का अंश हर में तथा हर अंश में चला जाता है तथा भाग का चिह्न गुणा में बदल दिया जाता है।

क्रियाकलाप-9

1. अब आप चित्रानुसार निरूपण कीजिए

$$(1) \qquad \frac{1}{2} \times \frac{1}{4}$$

(2)
$$2 \times \frac{1}{5}$$

(4) $3 \times \frac{1}{2}$

(2)
$$\frac{2}{3} \times \frac{1}{5}$$

(4)
$$3 \times \frac{1}{2}$$

2. चित्रात्मक निरूपण कीजिए-

(1)
$$\frac{1}{2} \div \frac{1}{8}$$

(2)
$$\frac{3}{4} \div \frac{1}{4}$$

प्रश्नावली १

खाली स्थानों की पूर्ति झए त्र या ढ लिखकर कीजिए 1.

(i)
$$(-2) \times 9$$
 ---- $(-3) \times 9$

(II)
$$3 \times (-5) \times (-2)$$
 ----- $(-5) \times 6$

(III)
$$4 \times 9$$
 ----- $(-2) \times 9 \times (-2)$

(IV)
$$2 \times (-6) \times 0$$
 ---- $(-3) \times 4$

$$(V) \qquad (-5)\times (-6)\times 2 \quad ---- \qquad (-2)\times 5\times (-8)$$

गुणनफल ज्ञात कीजिए – 2.

(i)
$$(-8) \times 5 \times 4$$

(ii)
$$(-9) \times 0 \times (-2)$$

(III)
$$(-42) \times 6 \times 3$$

(iv)
$$5 \times (-75) \times (-7)$$

(v)
$$(-30) \times (-25) \times 8$$

(VI)
$$(-8) \times (-12) \times (-30)$$

- भागफल ज्ञात कीजिए 3.
 - (i) $-80 \div 16$
 - $-24 \div (-8)$ (ii)
 - $650 \div (-13)$ (iii)
 - $-170 \div (-17)$ (iv)
 - $-256 \div 16$ (v)
 - $-170 \div (-1)$ (vi)
 - (vii) $0 \div (-18)$
 - $321 \div (-1)$ (viii)
 - (ix) $19 \div (-19)$
 - $200 \div (-10)$ (x)
- निम्न में से प्रत्येक रिक्त स्थान में झए त्र या ढ का चिह्न लगाइए जिससे कथन सत्य हो-4.
 - (-3)+(-4) (-4)+(-3)(i)
 - (-5)-(-7) _____(-7)-(-5) (ii)
 - $(-2)\times(-8)$ $(-8)\times(-2)$ (iii)
 - $(-2)\times(-8)$ $(-8)\times(-2)$ (iv)
 - $(-10) \div (-6)$ $(-6) \div (-10)$ (v)
 - [(-2)+(-3)]+(-4) [(-2)+[(-3)+(-4)](vi)
 - [(-3)-(-4)]-(-5) [(-4)-(-5)](vii)
 - $[(-20) \div (-10)] \div (-5)$ $[(-20) \div [(-10) \div (-5)]$ (viii)
 - $-2 \times [(-3) + (-5)]$ $[(-2) \times (-3)] + [(-2) \times (-5)]$ (ix)
 - $-2 \div [(-3)+(-5)]$ $[(-2)\div (-3)]+[(-2)\div (-5)]$ (x)
 - निम्न भिन्नों को हल कर सरलतम रुप में लिखिए 🗕
 - (1)

- (4)
- $\frac{1}{2} \times \frac{6}{7} \qquad (2) \quad \frac{5}{2} \times \frac{3}{10} \qquad (3) \quad \frac{4}{11} \times \frac{22}{8} \\
 \frac{3}{7} \div \frac{5}{14} \qquad (5) \quad \frac{3}{4} \div \frac{9}{8}$
- 6. राधा ने एक तरबूज $\frac{1}{2}$ का हिस्सा खाया तथा सोहन ने उसी तरबूज $\frac{1}{4}$ का हिस्सा खाया। बताइए दोनों ने मिलकर तरबूज का कुल कितना हिस्सा खाया।

- 7. मोहन की कक्षा में कुल 45 विद्यार्थी थे। लड़िकयों की संख्या कुल विद्यार्थियों का $\frac{2}{5}$ है। लड़िकयों की संख्या ज्ञात कीजिए।
- 8. प्रभात 500 रुपये लेकर बाजार गया। उसने कुल रुपयों के 4 रुपयों की किताबें खरीदीं तथा कुल रुपयों के 5 रुपयों की मिठाई खरीदी। बताइए उसके पास कुल कितने रुपये शेष बचे।
- 8. एक व्यापारी के पास कुल संपत्ति 60000 रुपये थी। उसने अपनी संपत्ति का $\frac{1}{2}$ भाग अपनी पत्नी को तथा शेष $\frac{1}{2}$ का भाग अपने बेटे को तथा $\frac{1}{2}$ भाग अपनी बेटी को दिया। प्रत्येक को प्राप्त राशि ज्ञात कीजिए।

अइऐ कुछ नए तरीकों से गुणा करें

पिछली कक्षाओं में आपने वैदिक गणित की कुछ विधियों का अभ्यास किया है यहाँ भी कुछ नए तरीके आपके लिए दिए जा रहे हैं। इनकी मदद से आप गुणा करना सीखें और यह भी समझें कि तरीके काम कैसे करते हैं।

सूत्र - एकाधिकेन पूर्वेण और अन्त्ययोर्दशकेऽपि सूत्र का प्रयोग कर गुणा करना।

इस विधि का उपयोग तब किया जाता है जब गुण्य और गुणक की इकाइयों का योग 10 हो तथा दहाइयाँ समान हों।

जैसे - 15 × 15 16 × 14 27 × 23 36 × 34

एक उदाहरण हल करें - 24 × 26

गुणनफल की इकाई और दहाई में - 4 × 6 = 24 लिखें (इकाइयों का गुणा)

गुणनफल के सैकड़े में लिखें $2 \times (2 + 1) = 2 \times 3 = 6$ (दहाई \times दहाई से एक अधिक)

कुल गुणनफल 624

एक और उदाहरण देखें = 52 × 58

ह. सै. द. ई.

गुणनफल = (5×6) $(2 \times 8) = 3016$

(दहाई × दहाई से एक अधिक) (इकाइयों का गुणा)

ऐसा क्यों होता है इसे समझें।

दो अंकों वाली ऐसी दो संख्याएँ लें जिनकी दहाइयों में x है और इकाइयों में क्रमशः y और z है।

ये दो संख्याएँ x y और x z होगी। यहाँ y + x = 10

दहाई इकाई

x y इन संख्याओं के मान क्रमशः 10 x + y और 10 x + z होंगे।

XZ

इनका गुणा करने पर –

$$(10 x + y) (10 x + z) = 100 x^{2} + 10 xz + 10 x y + yz$$
$$100 x^{2} + 10 x \times (y + z) + yz$$
$$100 x^{2} + 10x \times 10 + yz \quad (y + z = 10)$$

$$100 x^{2} + 100x + yz$$

$$100 x (x + 1) + yz$$

$$x \cdot (x + 1) x 100 + yz$$

चूंकि बायीं ओर के पद में 100 एक गुणक के रूप में उपस्थित है इसलिए x (x + 1) से प्राप्त संख्या सैकड़े पर (या आवश्यकता पड़ने पर हजार के स्थान पर भी) रखी जाएगी। y और z का गुणनफल इकाई और दहाई के स्थान पर रखा जाएगा। यदि y z के मान y और y हो तो इनके गुणनफल को 09 लिखा जाएगा।

क्या यह विधि तीन अंकों वाली दो संख्याओं के गुणा के लिए भी कारगर होगी ? आइए 317×313 पर विचार करें। यहाँ इकाइयों का योग 10 है। (7 + 3 = 10) दोनों संख्याओं में से प्रत्येक में 31 दहाइयाँ हैं याने दहाई और सैकड़े की संख्याएँ क्रमशः समान हैं।

		दस ह. ह.सै.	<i>दइ</i> .
गुणनफल 317 × 313		(31 × 32)	(7×3)
	=	992	21
2 2 2	=	99221	
एक और उदाहरण देखें		_	
		दस ह. ह.सै.	दइ.
317 x 313	=	(12 x 13)	(4×6)
	=	156	24
	=	15624	*

(चुंकि ये गुणनफल 100 x 100 से बड़े हैं इसलिए हल में दस हजार से बड़ी संख्याएँ मिलेंगी।)

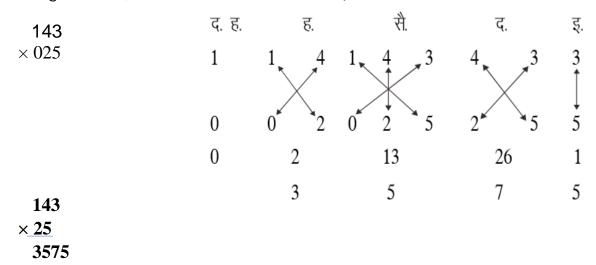
उर्ध्वतिर्यग्भ्याम विधि से गुणा

दो संख्याओं का गुणा करते समय यदि यह ध्यान रखा जाए कि कितनी इकाइयाँ , दहाइयाँ , सैकड़े आदि मिल रहे हैं और उन्हें उनके उचित स्थानों पर रखा जाए तो गुणा आसान हो जाता है। इसे एक उदाहरण से समझते हैं।

```
याने गुणनफल = 3 सैकड़े + 2 दहाइयाँ + 12 दहाइयाँ + 8 इकाइयाँ
= 3 सैकड़े + 14 दहाइयाँ + 8 इकाइयाँ
= 3 सैकड़े + 1 सैकड़ा + 4 दहाइयाँ + 8 इकाइयाँ
= 4 सैकड़े + 4 दहाइयाँ + 8 इकाइयाँ
= 448
```

इसे चित्र के रूप में देखें

सैकड़े	दहाइयाँ	इकाइयाँ
3×1	$(2 \times 1) + (3 \times 4)$	2×4
3	2 + 12	8
3	1 4	8
4	4	8


यदि दोनों संख्याएँ तीन तीन अंकों की हांे तो गुणा कैसे करेंगे? यहाँ जो गुणनफल मिलेगा उसमें दस हजार तक संख्याएँ होंगी।

	दस हजार	हजार	् सैकड़े	दहाइयाँ	इकाइयाँ
I	1	2 6	2 6 5	4 7 6 5	7 ↓ 5
п	2×1	1 × 6	1 × 5	4 × 5	7 × 5
		+ 2 × 4	+ 2 × 7	+6×7	
			+ 4 × 6		
ш	2	6	5	20	
		+8	+14	+42	35
			+24		
IV	2	- ① 4 -	- ④ 3 ←	-6 2 ←	35
V	3	8	9	5	3

देखने में यह तरीका लंबा लग रहा है किन्तु थोड़े अभ्यास के बाद आप सीधे उत्तर लिख सकेंगे। एक और सवाल हल करें .

$$143 \times 25$$

यहाँ गुणक 25 है इसे 025 के रूप में लिखकर आगे बढं़े -

एक न्यूनेन पूर्वेण सूत्र का उपयोग कर गुणा करना

आपने कक्षा 6 में यह सीख लिया है कि एक न्यूनेन पूर्वेण सूत्र का उपयोग कर गुणा कैसे किया जाता है। आपको याद होगा कि इस विधि का उपयोग हम तब करते हैं जब एक संख्या केवल 9 से बनी हो। एक उदाहरण से इसे फिर सम्झते हैं।

उदाहरण - 1 17 × 99 को हल करें।

हजार सै. द. इ.
$$17 \times 99 = \frac{(17-1)}{1} \quad 9 \quad 9$$
$$\frac{-1}{1} \quad \frac{6}{8} \quad 3$$
$$17 \times 99 = 1683$$

$$17 \times 99 = 1683$$

$$17 \times 99 = 17 \times (100 - 1)$$

$$= 1700 - 17$$

$$= 1600 + (100 - 17)$$

$$= 1600 + (99 - 16)$$

$$= 1600 + 83$$

$$= 1683$$

उदाहरण - 2 275 × 999 को हल करें।

यदि गुणक में 9 कम हो तो - (जैसे - 318 × 99, 213 × 99 आदि) हल करके देखें -

दस ह. सै. द. इ.
$$(318 - 1) \quad 9 \quad 9$$

$$- \quad 3 \quad 1 \quad 7$$

$$\overline{3} \quad 1 \quad 7 \quad 9 \quad 9$$

$$-3 \quad 1 \quad 7$$

$$= 3 \quad 1 \quad 4 \quad 8 \quad 2$$

दस ह. सै. द. इ.

 (ii)
$$213 \times 99 =$$
 $(213 - 1)$ 9 9

 -
 2 1 2

 2 1 0 8 7

यदि गुणक में 9 अधिक हों तो (जैसे 5×99 , 87×999 आदि) हल करके देखें -

्बीजांक का प्रयोग कर उत्तर जाँच करना

पिछली कक्षा में आपने पढ़ा है कि बीजांकों का प्रयोग कर गुणा की जाँच की जा सकती है। गुणा के संबंध में हम यह कह सकते हैं।

गुण्य का बीजांक × गुणक का बीजांक = गुणनफल का बीजांक

उदहारण 1

 $24 \times 26 = 624$ गुण्य 24 का बीजांक 2 + 4 = 6 गुणक 26 का बीजांक 2 + 8 = 8 दोनों बीजांकों का गुणनफल 6 x 8 = 48 48 का बीजांक 4 + 8 = 12, 1 + 2 = 3 गुणनफल 624 का बीजांक 6 + 2 + 4 = 12 1 + 2 = 3 चुंकि दोनों बीजांक समान है अतः 24 × 26 = 624 सही उत्तर है।

उदहारण 2

 $317 \times 313 = 99221$ गुण्य 317 का बीजांक u 3 + 1 + 7 u 1 + 1 = 2 गुणक 313 का बीजांक = 3 + 1 + 3 = 7 7 $2 \times 7 = 14$, 1 + 4 = 5गुणनफल 99221 का बीजांक = 9 + 9 + 2 + 2 + 1 = 23, 2 + 3 = 5 चूंकि दोनों बीजांक समान हैं। अतः 317 × 313 = 99221 सही उत्तर है।

प्रश्नावली

उपयुक्त विधि चुनकर हल कीजिए तथा अपने उत्तरों की जाँच कीजिए-

- (i) 25×29
- (ii) 17×99
- (iii) 387×999
- (iv) 211×99

- (v) 84×999
- (vi) 203×99
- (vii) 98×92
- (viii) 143×147

- (ix) 74×76
- (x) 432×438 (xi) 36×45
- (xii) 107×234

- (xiii) 201× 104
- (xiv) 123×45
- (xv) 28×317

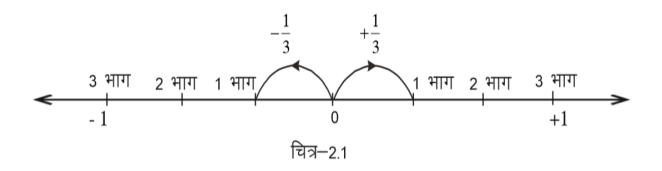
अध्याय दो

परिमेय संख्याएँ (Rational Numbers)

राधा ने अपने साथियों से पूछा- ''क्या तुम दो संख्याओं के अन्तर को तीन भागों में बाँट सकते हो?''

हामिद : क्यों नहीं ? यदि संख्याएँ 10 और 9 हों, तो 10-9 = 1 को तीन बराबर भागों में बाँटने पर

प्रत्येक भाग होगा।


सुरेश : 1 को तीन भागों में बाँटना तो हमने भिन्न के अध्याय में सीखा है, परन्तु यदि 9-10

= -1 हो तो इसे तीन भागों में कैसे बाँटेंगे?

सभी यह सोच रहे थे कि -1 को 3 भागों में कैसे बाँटे ?

तभी राधा ने सुझाया कि जिस तरह संख्या रेखा में शून्य के दायीं ओर एक के तीन भागों में से

एक भाग को लेकर ¹/₃ प्राप्त किया जा सकता है उसी प्रकार से शून्य के बायीं ओर भी तीन भागों में से एक 1/₄ भाग लेकर - ³ प्राप्त किया जा सकता है।

सुरेश को फिर भी समझ नहीं आया, उसने पूछा कि किसी वस्तु के तीन समान टुकड़ों में $\frac{2}{3}$ से 2 टुकड़ें लेने पर $\frac{2}{3}$ के बराबर होगा, परन्तु को हम $\frac{2}{3}$ किस तरह दर्शाएंगे ?

हामिद: पिछली कक्षा में हमने पढ़ा था कि जैसे पाँच फूल, पाँच भेड़, पाँच पत्तियाँ एवं पाँच चश्मे कोई भी वस्तुएं हो सकती हैं अर्थात् गिनती से प्राप्त संख्या किसी खास वस्तु से जुड़ी नहीं होती है। वह एक सोच है जो हमें वस्तुओं की सही गणना करने में मदद करती है।

राधा ने कहा- ठीक कह रहे हो, धनात्मक संख्याओं का उपयोग हम किसी वस्तु को गिनने में करते हैं परन्तु ऋणात्मक संख्याओं का उपयोग गिनने में नहीं होता । जैसे: 2, 3, 5 इत्यादि संख्याओं का उपयोग गिनती के लिए किया जाता है, परन्तु -2, -3, -5 इत्यादि का उपयोग हम गिनने में 2 5 7

नहीं करते। पिछली कक्षा में हमने यह भी सीखा है कि $\frac{3}{6}$, $\frac{6}{9}$.. इत्यादि को आयत या वृत्त के 3 समान खण्डों में से 2 खण्ड को लेकर, 6 समान खण्डों से 5 खण्ड लेकर और 9 समान खण्डों से 7 खण्ड लेकर दर्शाया जा सकता है, परन्तु किसी ऋणात्मक भिन्न को इस प्रकार से नहीं दर्शाया जा सकता है।

सभी विद्यार्थी अब धनात्मक भिन्नों के साथ-साथ ऋणात्मक भिन्नों के बारे में सोचने लगे थे। परन्तु अब उनके सामने समस्या यह थी कि ऋणात्मक भिन्न, धनात्मक भिन्न से अलग कैसे हैं? क्या ये कोई अलग प्रकार की संख्याएँ हैं?

उन्होंने यह समस्या अपनी शिक्षिका के सामने कक्षा में रखी।

शिक्षिका ने बताया कि हमने पहले प्राकृत संख्याएँ सीखी, फिर उसमें शून्य को शामिल कर पूर्ण संख्या बनाई। फिर हमने भिन्नात्मक संख्याओं के बारे में सोचा और फिर ऋणात्मक संख्या जानी। इन सब संख्याओं को और ऋणात्मक भिन्न संख्याओं को मिलाकर परिमेय संख्याएँ बनती हैं। अर्थात् $-\frac{3}{4}, -\frac{1}{2}, 0, \frac{2}{8}, \frac{1}{2}, \frac{15}{7}, \frac{3}{1}$ आदि सभी परिमेय संख्याएँ हैं। आप भी इस प्रकार 10 परिमेय संख्याओं के उदाहरण लिखिए।

क्रियाकलाप-1

सारणी-1

नीचे सारणी में दो-दो पूर्णांक दिए गए हैं। आप उनमें से एक को अंश तथा दूसरे को हर मानकर परिमेय संख्या बनाइए -

क्र.सं.	पूर्णाक	अंश	हर	परिमेय संख्या	अंश	हर	परिमेय संख्या
1	2 एवं 3	2	3	$\frac{2}{3}$	3	2	$\frac{3}{2}$
2	- 5 एवं 7						
3	4 एवं -8						
4	- 7 एवं - 9						
5	1 एवं 6						

प्राकृत संख्या के समूह (Natural Number) को N से, पूर्ण संख्या के समूह (Whole Number) को W से, पूर्णांक के समूह (Integer) को। से दर्शाया जाता है, उसी प्रकार परिमेय संख्या के समूह

अंश

दोनों पूर्णांक हैं। यदि अंश को p तथा हर को q माना जाए, तो q, जहाँ p तथा q दोनों पूर्णांक हैं। सोचिए यदि q का मान शून्य हो तो क्या होगा ? किसी पूर्णांक को शून्य से भाग दिया जाए तो भागफल क्या होगा ?

किसी भी संख्या को 0 से भाग नहीं दिया जा सकता यह अपरिभाषित है। इसलिए 0 की गणना नहीं की जा सकती है और वह किसी निश्चित संख्या को नहीं दर्शाती है।

अतः $\frac{P}{0}$ एक परिमेय संख्या नहीं है।

<u>p</u>

इस प्रकार परिमेय संख्या ऐसी संख्या है जिसे q के रूप में लिखा जा सकता हैए जहाँ p एवं q पूर्णांक है तथा $q \neq 0$

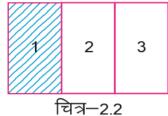
पूर्णांक संख्याओं का परिमेय संख्या के रूप में निरूपण

क्या प्रत्येक पूर्णांक एक परिमेय संख्या भी है? पूर्णांक संख्याओं के उदाहरण हैं 4, 8, 11, -3, -7 आदि। आइए सोचें कि हम 4 को किस-किस प्रकार से लिख सकते हैं?

4 8 12

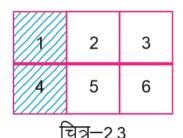
4 को हम $1^{\frac{1}{2}}$ $\frac{1}{3}$ इत्यादि किसी भी प्रकार से लिख सकते हैं। क्या आप इससे सहमत हैं? कितनी और तरीकों से 4 को लिखा जा सकता है?

हसी प्रकार, -7 को भी 1 2 3 इत्यदि के रूप में लिख सकते हैं। ये सभी हर अर्थात् परिमेय संख्या के रूप में हैं क्योंकि इनके अंश तथा हर दोनों पूर्णांक हैं। **इसलिए सभी पूर्णांक**, **परिमेय संख्या के रूप में लिखे जा सकते हैं**। आप भी नीचे दिए गए पूर्णांकों को परिमेय संख्याओं के रूप में लिखिए (यहाँ हमने प्रत्येक पूर्णांक के लिए 3 खाली स्थान दिए हैं। आप प्रत्येक पूर्णांक को और कितने रूपों में लिख सकते हैं।) –


यहाँ 0 को भी हम $\frac{0}{1}$, $\frac{0}{3}$, $\frac{0}{15}$, $\frac{0}{999}$, इत्यादि के रूप में लिख सकते हैं। क्या आप कोई ऐसा पूर्णांक सोच सकते हैं जो परिमेय संख्या के रूप में न लिखा जा सके ?

सोच कर लिखें- एक पूर्णांक को कई परिमेय संख्या के रूप में लिखने के लिए आपने क्या किया ? कोई 5 पूर्णांक लिखकर उन्हें परिमेय संख्या के रूप में लिखिए।

तुल्य परिमेय संख्याएँ



प्रत्येक पूर्णांक को कई परिमेय संख्या के रूप में लिख सकते हैं और इन सभी परिमेय संख्याओं का मान उस पूर्णांक के समान ही होता है। हमने देखा कि किसी भिन्नात्मक संख्या को भी समान मान वाली एक से अधिक संख्या के रूप में लिख सकते हैं। क्या यह परिमेय संख्या में भी होता है ? आइए देखंे-

चित्र-2.2 में रेखांकित भाग को दर्शाता है।

चित्र-2.2 के दो समान भाग करने पर कुल 6 भाग में से 2 भाग रेखांकित है (चित्र 2.3)।

2 <u>|</u> अर्थात् रेखांकित भाग 6 है जो पूरे का 3 भाग है। इसी प्रकार चित्र-2.2 के तीन समान भाग करने पर उसके कुल 9 भाग में तीन भाग रेखंािकत है या $\frac{1}{9}$ भाग रेखांिकत है जो पूरे का $\frac{1}{3}$ भाग है (चित्र 2.4)।

2 5 6 8 चित्र-2.4

 $\frac{2}{6}$ एवं $\frac{3}{9}$ दोनों वास्तव में के ही बराबर हैं अर्थात् $\frac{1}{3}$, $\frac{2}{6}$, $\frac{3}{9}$ परस्पर तुल्य परिमेय संख्याएँ हैं।

यदि भिन्नात्मक संख्या ऋणात्मक हो तो भी उस संख्या के अंश और हर में एक समान संख्या से गुणा करने पर मान नहीं बदलता। जैसे-

$$-\frac{1}{2}$$
 के अंश एवं हर में 2 का गुणा करने पर $-\frac{1\times 2}{2\times 2} = -\frac{2}{4}$

$$-\frac{1\times2}{2\times2} = -\frac{2}{4}$$

$$-\frac{1}{2}$$
 के अंश एवं हर में 3 का गुणा करने पर
$$-\frac{1\times3}{2\times3} = -\frac{3}{6}$$

$$-\frac{1}{2}$$
 के अंश एवं हर में 4 का गुणा करने पर
$$-\frac{1\times4}{2\times4} = -\frac{4}{8}$$

परिमेय संख्या का स्वरूप बदल रहा है, परन्तु मान $\frac{1}{2}$ ही है । इस प्रकार $\frac{2}{4}$, $\frac{3}{6}$ और एक दूसरे के तुल्य परिमेय संख्याएँ हैं ।

$$\frac{2}{5}$$
 = = = = = = = =

सारणी-2 निम्न तालिका में दर्शाए अनुसार तुल्य परिमेय संख्या लिखिए-

क्रमांक	परिमेय संख्या	तुल्य परिमेय संख्या
1.	$\frac{2}{5}$	$\frac{4}{10}, \frac{6}{15}, \frac{8}{20}, \frac{10}{25}$
2.	$\frac{-3}{7}$	
3.	$\frac{8}{-11}$	
4.	$\frac{-7}{-9}$	
5.	$-\frac{6}{15}$	

परिमेय संख्या का सरलतम रूप

सारणी-2 को भरते हुए अनु ने सीमा से कहा कि $-\frac{6}{15}$ तो $-\frac{2}{5}$ और $-\frac{4}{10}$ की तुल्य परिमेय संख्या है अर्थात् परिमेय संख्या के अंश एवं हर में किसी समान संख्या से भाग देकर भी तुल्य परिमेय संख्या प्राप्त की जा सकती है।

2

सीमा ने कहा कि $\frac{-}{5}$ के अंश व हर में कोई उभयनिष्ठ अभाज्य गुणनखण्ड नहीं है जिससे पुनः भाग दिया जा सके, अतः यह सरलतम रूप होगा अर्थात् यदि अंश और हर के गुणनखंड

निकाल कर सबसे बड़े उभयनिष्ठ गुणनखंड से अंश तथा हर को भाग दे दिया जाय तो परिमेय संख्या 'सरल रूप' में प्राप्त हो जाएगी। इसी तरह परिमेय संख्या का भी सरलतम रूप प्राप्त किया जा सकता है। २%

इस बीच समूह में बैठे रमेश ने कहा - 35 में 28 के गुणनखंड 2, 4 और 7 हैं तथा 35 के गुणनखंड 5 और 7 हैं। इनमें 7 उभयनिष्ठ है अर्थात अंश एवं हर को 7 से भाग दिया जा सकता है।

अर्थात
$$\frac{28}{35} = \frac{28 \div 7}{35 \div 7} = \frac{4}{5}$$

यही सरलतम रूप है। सब बच्चों ने कहा- यह ठीक है। इसे और अधिक सरल नहीं किया जा सकता।

अनु एवं सीमा की टोली (समूह) ने परिमेय संख्या को सरलतम रूप में लिखने का एक तरीका $\frac{24}{36}$ जापके पास भी कोई तरीका है? उस तरीके से $\frac{98}{36}$ और $\frac{98}{112}$ को सरलतम रूप में लिखिए।

क्रियाकलाप-2

क्र.सं.	परिमेय संख्या	अंश के गुणनखंड	हर के गुणनखंड	सबसे बडा उभयनिष्ठ गुणनखंड	अंश÷उभयनिष्ठ गुणनखंड हर÷उभयनिष्ठ गुणनखंड	सरलतम रूप
1.	45 54	1,3,5,9,15,45	1,2,3,6,9, 18, 27, 54	9	$\frac{45 \div 9}{54 \div 9}$	<u>5</u>
2.	$\frac{57}{76}$					
3.	$\frac{18}{36}$					
4.	$\frac{27}{81}$					
5.	$\frac{-63}{85}$					

टीप:- परिमेय संख्या को तुल्य परिमेय संख्या में बदलने के लिए अंश व हर में समान संख्या से गुणा या भाग करते हैं निम्नलिखित संख्याओं में से कौन-कौन सी परिमेय संख्याएँ हैं?
 1 - 3 - 24 - 3

$$\frac{4}{1}$$
, $\frac{-3}{7}$, -27 , $\frac{24}{0}$, $\frac{-3}{-5}$

- 2. निम्नलिखित संख्याओं को परिमेय संख्या के रूप में लिखिए-—38, 17, 0, —100, 794.
- 3. निम्नलिखित परिमेय संख्याओं के तीन-तीन तुल्य परिमेय संख्याएँ लिखिए-

(i)
$$\frac{1}{5}$$
 (ii) $\frac{-3}{4}$ (iii) $\frac{-5}{8}$ (iv) $\frac{6}{11}$ (v) $\frac{4}{3}$

4. निम्नलिखित परिमेय संख्याओं को सरलतम परिमेय संख्या के रूप में लिखिए-

$$\frac{25}{40}$$
, $\frac{-16}{36}$, $\frac{-15}{-45}$, $\frac{-48}{96}$ और $\frac{-70}{100}$

- 5. दी गई परिमेय संख्याओं में से तुल्य परिमेय संख्या छाँटकर लिखिए ?
 - (1) $\frac{4}{12}$, $\frac{8}{24}$, $\frac{1}{3}$, $\frac{16}{36}$ और $\frac{25}{75}$

(2)
$$\frac{-3}{5}$$
, $\frac{-6}{10}$, $\frac{-15}{25}$, $\frac{-27}{45}$ और $\frac{-15}{20}$

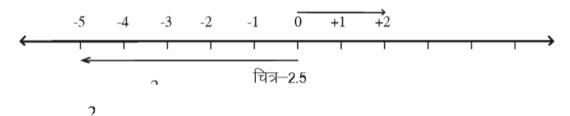
6. क्या निम्न परिमेय संख्याओं के जोड़े तुल्य परिमेय संख्या को प्रदर्शित करते हैं ? कारण सहित समझाइए।

(1)
$$\frac{9}{11}$$
, $\frac{9+3}{11+3}$ (2) $\frac{5}{7}$, $\frac{5-2}{7-2}$

- 7. $\frac{-3}{8}$ को ऐसी तुल्य परिमेय संख्याओं के रूप में व्यक्त कीजिए जिनका
 - (i) अंश 6

(ii) अंश 12

(iii) हर −24

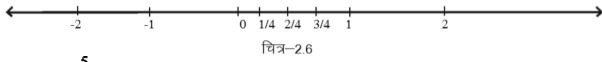

- (iv) हर −32 हो ।
- 8. 'a' का मान ज्ञात कीजिए। यदि
 - $\frac{5}{11}$ $\frac{a}{a-33}$ तुल्य परिमेय संख्याएँ हों। (2) $\frac{2}{3}$ $\frac{8}{a}$ तुल्य परिमेय संख्याएँ हों।

$$\frac{3}{(3)}$$
 $\frac{a}{7}$ $\frac{a}{35}$ $\frac{a}{36}$ $\frac{a}{36}$ $\frac{18}{5}$ $\frac{18}{5}$ $\frac{18}{6}$ $\frac{18}{5}$ $\frac{18}{6}$ $\frac{18}{6}$

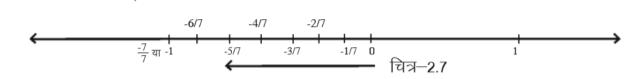
$$\frac{-a}{13} = \frac{-24}{39}$$
 (5) $\frac{-24}{39}$ तुल्य परिमेय संख्याएँ हों।

परिमेय संख्याओं का संख्या रेखा पर निरूपण

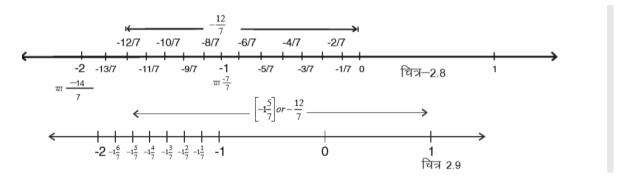
पूर्णांक संख्याओं को संख्या रेखा पर दर्शाना आप जानते हैं। आप यह भी जानते हैं कि धनात्मक पूर्णांक संख्याओं को शून्य के दायीं ओर तथा ऋणात्मक पूर्णांक संख्याओं को शून्य के बायीं ओर दर्शाया जाता है जैसे: +2 और -5 को चित्रानुसार दर्शाया गया है।



परिमेय संख्या । भी संख्या रेखा पर +2 के स्थान पर ही है। जिन परिमेय संख्याओं का हर 1 होता है वह संख्या रेखा पर पूर्णाकों के स्थान पर आती है।


-3 + 6

अब आप 1 और 1 को संख्या रेखा पर प्रदर्शित कीजिए। यदि हर का मान 1 को छोड़कर कोई अन्य संख्या हो, तो उसे संख्या रेखा पर दर्शाने हेतु एक इकाई को हर के बराबर भागों में विभाजित कर लेते हैं। फिर संख्या रेखा पर प्रत्येक बराबर भागों को अंकित करके अंश के बराबर भाग को चिन्हांकित कर लेते हैं, जो दी गई परिमेय संख्या का निरूपण होगा। यह केवल सरल परिमेय संख्या के प्रदर्शन का तरीका होगा। मिश्र परिमेय संख्या को नीचे दी गई व्याख्या (चित्र 1.8) के अनुसार निरूपित


करेंगे। जैसे 4 को संख्या रेखा पर चित्रानुसार दर्शांपुगे।

इसी प्रकार 7 को संख्या रेखा पर इस प्रकार दर्शाएंगे -

 $\frac{-12}{7}$ एक मिश्र परिमेय संख्या है जिसे $-1\frac{5}{7}$ या $-(1+\frac{5}{7})$ या $-1-\frac{5}{7}$ के रूप में लिखते हैं। अतः संख्या रेखा पर इस प्रकार दर्शांयेंगे -

कुछ और परिमेय संख्याओं को भी संख्या रेखा पर दर्शाइए-

(1)
$$\frac{3}{5}$$
 (2) $\frac{-5}{8}$ (3) $\frac{17}{9}$ (4) $\frac{-15}{11}$

(5) तीन परिमेय संख्याएँ लिखकर उन्हें संख्या रेखा में दर्शाइए।

क्रियाकलाप-3

- (1) -2 व -3 के बीच 4 ऋणात्मक संख्या सोच कर संख्या रेखा पर दर्शाइए।
- (2) -5 व 3 के बीच 6 ऋणात्मक संख्याएँ सोचिए।

कौन सी संख्या बड़ी है?

प्राकृत, पूर्ण व भिन्नात्मक संख्याओं की तुलना आप पहले कर चुके हैं। भिन्नों की तुलना करने के लिए उन्हें समान हर वाली भिन्नों में बदलना होता है। इसके पश्चात् अंशों की तुलना कर भिन्न का छोटा या बड़ा होना ज्ञात करते हैं।

उसी प्रकार, परिमेय संख्याओं की आपस में तुलना करने के लिए उन्हें समान हर वाली परिमेय संख्याओं के रूप में लिखा जाता है। उसके पश्चात् अंशों की तुलना कर बड़ी या छोटी परिमेय संख्या का निर्धारण करते हैं।

$$\frac{-5}{8}$$
 $\frac{-3}{4}$ की तुलना कीजिए। हल यहाँ हर 4 व 8 हैं जिनका ल.स. 8 है

अतः समान हर बनाने के $\frac{-5}{8} = \frac{-5}{8} \times \frac{1}{1} = \frac{-5}{8}$ लिए के $\frac{-5}{8}$ अंश व हर में 1 का तथा $\frac{-3}{4}$ के अंश व

हर में 2 का गुणा करते हैं।

$$\frac{-3}{4} = \frac{-3}{4} \times \frac{2}{2} = \frac{-6}{8}$$

उदाहरण 1. $\frac{-4}{7}$ और $\frac{-5}{-3}$ में से कौन सी परिमेय संख्या छोटी है $\frac{1}{5}$

हल. दूसरी परिमेय संख्या —3 है। सबसे पहले इसे हम 3 के रूप में लिखते हैं।

(इसका एक कारण यह भी हो सकता है कि एक $\frac{-4}{7}$ ऋणात्मक संख्या है परन्तु $\frac{-5}{3}$ जो $\frac{5}{3}$

की एक धनात्मक संख्या है और ऋणात्मक संख्या धनात्मक संख्या से हमेशा छोटी होगी।)

$$\frac{-5}{-3} = \frac{-5 \times (-1)}{-3 \times (-1)} = \frac{5}{3}$$

अब $\frac{-4}{7} = \frac{-4 \times 3}{7 \times 3} = \frac{-12}{21}$

$$\frac{5}{3} = \frac{5 \times 7}{3 \times 7} = \frac{35}{21}$$

$$\frac{-12}{21} < \frac{35}{21}$$

$$\frac{-4}{7} < \frac{5}{3}$$

$$\frac{-4}{7} < \frac{-5}{-3}$$

अर्थात् $\frac{-4}{7}$ दूसरी संख्या $\frac{-5}{-3}$ से छोटी है।

उदाहरण 3. परिमेय संख्याओं $\frac{3}{4}$, $\frac{-7}{8}$, $\frac{13}{-24}$, $\frac{-5}{-12}$ को अवरोही क्रम ;घटते क्रमद्ध में लिखिए।

हल- दी गई परिमेय संख्याओं में $\frac{13}{-24}$ और $\frac{-5}{-12}$ का हर ऋणात्मक है। तुलना करने के

लिए इन्हें धनात्मक हर वाली परिमेय संख्याओं में बदलते हैं-

$$\frac{13}{-24} = \frac{13 \times (-1)}{-24 \times (-1)} = \frac{-13}{24} \quad \text{$\forall \vec{q}$} \qquad \frac{-5}{-12} = \frac{-5 \times (-1)}{-12 \times (-1)} = \frac{5}{12}$$

अब दी गई परिमेय संख्याएँ इस प्रकार हैं- $\frac{3}{4}, \frac{-7}{8}, \frac{-13}{24}, \frac{5}{12}$

$$\frac{3}{4}, \frac{-7}{8}, \frac{-13}{24}, \frac{5}{12}$$

संख्याओं के हर 4. 8. 24 एवं 12 हैं जिनका ल.स. 24 होगा।

हर समान करने पर,
$$\frac{3\times6}{4\times6}$$
, $\frac{-7\times3}{8\times3}$, $\frac{-13\times1}{24\times1}$, $\frac{5\times2}{12\times2}$

$$\frac{18}{24}$$
, $\frac{-21}{24}$, $\frac{-13}{24}$, $\frac{10}{24}$

चूँकि
$$18 > 10 > -13 > -21$$

$$\frac{18}{24} > \frac{10}{24} > \frac{-13}{24} > \frac{-21}{24}$$

$$\frac{3}{4} > \frac{-5}{-12} > \frac{13}{-24} > \frac{-7}{8}$$

$$\frac{3}{4} > \frac{-5}{-12} > \frac{13}{-24} > \frac{-7}{8}$$

क्रियाकलाप-४

- कोई भी 5 परिमेय संख्या लिखिए। उन्हें क्रम में जमाइए। 1.
- बगैर लघुतम समापवर्त्य निकाले बताइए कि इनमें सबसे बड़ी और सबसे छोटी परिमेय 2. संख्या कौनसी है –

$$\frac{-1}{2}$$
, $\frac{-5}{1}$, $\frac{3}{2}$, $\frac{2}{7}$, $\frac{17}{12}$, $\frac{2}{1}$, $\frac{-2}{9}$, $\frac{-12}{6}$

अपने उत्तर का तर्क भी लिखिए।

ऐसे 5 और अभ्यास बनाइए और साथियों को हल करने दीजिए। 3.

प्रश्रावली 2.2

इन परिमेय संख्याओं को संख्या रेखा पर निरूपित कीजिए। 1.

$$\frac{2}{3}$$
, $\frac{-5}{9}$, $\frac{-3}{13}$, $\frac{-16}{-5}$

संख्या रेखा पर निरूपित कर बताइए कि कौन सी परिमेय संख्या छोटी है? 2.

(1)
$$\frac{3}{5}$$
, $\frac{-7}{8}$ (2) $\frac{-8}{7}$, $\frac{7}{5}$

4. दोनों परिमेय संख्याओं में से कौन-सी संख्या बड़ी है?

5. दोनों परिमेय संख्याओं में से कौन सी संख्या छोटी है?

(1) 5,
$$\frac{13}{3}$$
 (2) $\frac{4}{-6}$, $\frac{-7}{3}$ (3) $\frac{-17}{11}$, $\frac{9}{7}$ (4) $\frac{17}{19}$, $\frac{-3}{19}$

6. दी गई परिमेय संख्याओं को आरोही क्रम (बढ़ते क्रम) में लिखिए-

$$\frac{2}{6}$$
, $\frac{-4}{12}$, $\frac{-9}{-27}$, $\frac{-5}{18}$

7. दी गई परिमेय संख्याओं को (अवरोही क्रम) घटते क्रम में लिखिए-

$$\frac{-8}{7}$$
, $\frac{2}{21}$, $\frac{-5}{14}$, $\frac{1}{28}$

- 8. जूली ने कुछ कथन लिखकर अपने साथियों से पूछा कि मेरे द्वारा लिखे गए कथन सत्य है या असत्य जाँच करो<u>।</u>
 - (1) परिमेय संख्या 23 संख्या रेखा पर शून्य के बायीं ओर स्थित है।
 - (2) परिमेय संख्या $\frac{-8}{-3}$ संख्या रेखा पर शून्य के दायीं ओर स्थित है।
 - (3) परिमेय संख्या <u>-5</u> संख्या रेखा पर शून्य के दायीं ओर स्थित है।
- (4) परिमेय संख्याएँ और 7 संख्या रेखा पर शून्य के क्रमशः दायीं और बायीं ओर स्थित हैं।

आप ऐसे चार और नये कथन लिखिए और दोस्तों से उनकी सत्यता की जाँच कराइए।

प्रश्नावली 2.3

- 1. सतीश को अपने घर से शाला पहुंचने 2 घंटे का समय लगता है, तथा उसकी बहन को घर से शाला पहंुचने में 90 मिनट का समय लगता है बताइए घर से शाला पहंुचने में किसको ज्यादा समय लगता है?
- 2. राधिका रात के खाने में $\frac{2}{2}$ रोटी खाती है तथा उसकी बहन गितिका $\frac{10}{4}$ रोटी खाती है। बताइए क्या दोनों बराबर रोटियाँ खाते हैं?

3. रितेश बाजार जाने के लिए घर से पैदल निकलता है। पूर्व दिशा की ओर 2 किलोमीटर चलने के पश्चात उसे ध्यान आता है कि वह तो आगे निकल आया।

तब वह वापस पश्चिम दिशा में $\frac{1}{2}$ किलोमीटर चलता है। संख्या रेखा पर दर्शाते हुए बताइए कि वह अभी अपने घर से कितनी दूरी पर है?

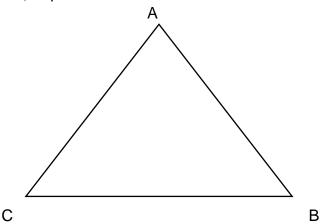
 $\frac{9}{2}$

4. सौरभ शाला से सीधे सड़क पर ³ किलोमीटर की दूरी बस से तय करता है। उसके बाद ³ किलोमीटर की दूरी पैदल तय करता है। संख्या रेखा पर दर्शाते हुए बताइए कि वह शाला से कितनी दूरी पर है।

हमने सीखा

p

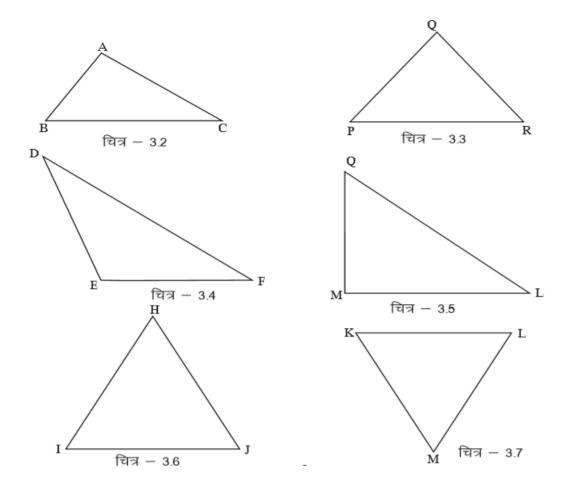
- 1. ऐसी सभी संख्याएँ जो $\mathbf q$ के रू में लिखी हों या लिखी जा सकें, जिनमें $\mathbf p$ व $\mathbf q$ पूर्णांक हो तथा $\mathbf q \neq 0$, परिमेय संख्याएँ कहलाती हैं।
- 2. परिमेय संख्या प सरलतम रुप में होती है, यदि p और q में कोई भी गुणनखण्ड उभयनिष्ठ नहीं है।
- दो या दो से अधिक परिमेय संख्याओं की तुलना करने के लिए हर को समान करके अंशों के आधार पर तुलना कर सकते हैं।



अध्याय तीन त्रिभुज के गुण (Properties Of Triangle)

आप जानते हैं कि तीन भुजाओं से घिरी बन्द आकृति को त्रिभुज कहते हैं जिसमें तीन भुजाएँ और तीन कोण होते हैं। त्रिभुज के तीनों अन्तः कोणों का योग 180° होता है। साथ ही भुजाओं एवं कोणों की माप के आधार पर त्रिभुज के प्रकारों के बारे में भी आप पिछली कक्षा में जान चुके हैं। आइए, त्रिभुज के गुणों को फिर से एक बार दोहरा लें -

सम्मुख कोण एवं सम्मुख भुजा


नीचे दिये गये त्रिभुज को देखिए:-

यहाँ भुजा AB का सम्मुख कोण ∠C है, क्योंकि यह कोण भुजा AB के दोनों सिरों में से किसी भी सिरे पर नहीं बना है। जैसे भुजा AB का सम्मुख कोण ∠C है, वैसे ही ∠C की सम्मुख भुजा AB है। इसी प्रकार त्रिभुज की दो और भुजाओं के सम्मुख कोणों को तथा कोणो की सम्मुख भुजाओं को लिखिए। क्या आपने कभी सोचा है कि किसी त्रिभुज की भुजाओं का उनके सम्मुख कोणों के साथ या कोणों का उनकी सम्मुख भूजाओं के साथ क्या सम्बन्ध है? आइए, एक क्रियाकलाप के माध्यम से इनके बीच सम्बन्ध ढूंढें।

क्रियाकलाप 1. -

नीचे विभिन्न मापों के कुछ त्रिभुज दिये गये हैं। इनकी भुजाओं एवं सम्मुख कोणों को मापकर सारणी में भरिए तथा निर्देशानुसार रिक्त स्थानों की पूर्ति कीजिए:-

सारणी 1

चि.सं.	∆का नाम	भुजा की माप	भुजा के सम्मुख कोण की माप	भुजाओं को लंबाई के घटते क्रम में लिखने पर	कोणों को उनके माप के घटते क्रम में लिखने पर
3.2	ΔABC	AB = 2.9 CM BC = 5.4 CM CA = 4.4 CM	$\angle C = 30^{\circ}$ $\angle A = 95^{\circ}$ $\angle B = 55^{\circ}$	BC, CA, AB	∠A, ∠B, ∠C
3.3	ΔPQR				
3.4	ΔDEF				
3.5	ΔQLM				
3.6	ΔHIJ				
3.7	ΔKLM				

उपरोक्त सारणी को देखकर नीचे दिये गये प्रश्नों के उत्तर दीजिए:-

- (1) क्या सदैव सबसे बड़ी भुजा का सम्मुख कोण सबसे बड़ा है?
- (2) क्या सदैव सबसे छोटी भुजा का सम्मुख कोण सबसे छोटा है?
- (3) क्या सबसे बड़े कोण की सम्मुख भुजा भी सबसे बड़ी है?
- (4) क्या सबसे छोटे कोण की सम्मुख मुजा भी सबसे छोटी है?
- (5) क्या चित्र 3.6 में दिये गये त्रिभुज में बराबर भुजाओं के सम्मुख कोण भी बराबर हैं?
- (6) चित्र 3.7 में दिये गये त्रिभुज में भुजाओं एव उनके सम्मुख कोणों के बीच कौन-सा सम्बन्ध हैं।

आप पायेंगे कि प्रत्येक त्रिभुज में सबसे बड़ी भुजा के सम्मुख कोण का माप सबसे अधिक है। उसी प्रकार सबसे बड़े कोण की सम्मुख भुजा का माप भी सबसे अधिक है तथा जिस प्रकार सबसे छोटी भुजा के सम्मुख कोण का माप सबसे कम है उसी प्रकार सबसे छोटे कोण की सम्मुख भुजा भी सबसे छोटी है।

चित्र 3.6 में त्रिभुज भ्प्श्र में बराबर भुजाओं के सम्मुख कोण भी बराबर हैं, उसी प्रकार बराबर कोणों के सम्मुख भुजाएँ भी बराबर हैं। चित्र 3.7 में दिये गये त्रिभुज में सभी भुजाएं बराबर हैं एवं उनके सम्मुख कोण भी बराबर हैं, तो क्या समान कोणों के सम्मुख भुजाएँ भी समान होती हैं?

आप किसी भी माप की दो समबाहु ओर दो समद्विबाहु त्रिभुज खींचकर कोणों और भुजाओं के बीच संबंधों की जाँच कीजिए।

उदाहरण 1. किसी समद्विबाहु त्रिभुज का एक कोण 80° का है। शेष समान कोणों का माप ज्ञात कीजिए।

हल: समद्विबाहु त्रिभुज में दो भुजाएं समान होती है, इसलिए भुजाओं के सामने के दो कोण बराबर माप के होंगे। माना प्रत्येक बराबर कोण की माप x है।

चूंकि त्रिभुज के तीनों कोणों का योग = 180°

अतः
$$x + x + 80^\circ = 180^\circ$$

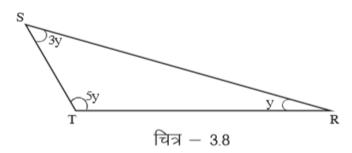
 $\Rightarrow 2x + 80^\circ = 180^\circ$
 $\Rightarrow 2x = 180^\circ - 80^\circ$ (पक्षान्तर करने पर)
 $\Rightarrow 2x = 100^\circ$
 $\Rightarrow x = \frac{100}{2}$

$$\Rightarrow x = 50^{\circ}$$

अतः प्रत्येक बराबर कोण 50° का होगा।

उदाहरण 2. किसी समबाहु त्रिभुज के सभी कोणों की माप ज्ञात कीजिए। हम जानते हैं कि समबाहु त्रिभुज के प्रत्येक कोण बराबर माप के होते हैं। माना समबाहु त्रिभुज का प्रत्येक बराबर कोण X° का है। त्रिभुज के तीनों अन्तः कोणों का योग = 180°

$$\Rightarrow$$
 $x + x + x = 180^{\circ}$


$$\Rightarrow$$
 3x = 180°

$$\Rightarrow \quad x = \quad \frac{180^{\circ}}{3}$$

$$x = 60^{\circ}$$

अतः समबाहु त्रिभुज का प्रत्येक कोण 60° का होता हैं।

उदाहरण 3. नीचे दिये गये त्रिभुज के प्रत्येक कोण की माप ज्ञात कीजिए।

हल: हमें ज्ञात है कि त्रिभुज के तीनों अन्तः कोणों का योग 180° होता है।

$$\therefore$$
 ∆ RST \dot{H} ∠R + ∠S + ∠T = 180°

$$\Rightarrow$$
 $y + 3y + 5y = 180^{\circ}$

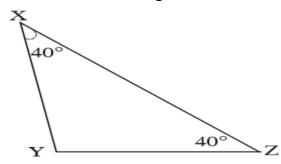
$$\Rightarrow$$
 9y = 180°

$$\Rightarrow y = \frac{180^{\circ}}{9}$$

$$\Rightarrow$$
 y = 20°

अतः $\angle R = 20^{\circ}$ $\angle S = 3 \times 20^{\circ} = 60^{\circ}$ $\angle T = 5 \times 20^{\circ} = 100$ अर्थात् त्रिभूज के कोण क्रमशः 20°, 60° और 100° हैं।

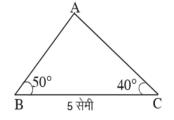
प्रश्नावली 3.1

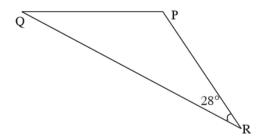

प्र.1 रिक्त स्थानों की पूर्ति कीजिए:-

- (1) किसी त्रिभुज में बराबर भुजाओं के सम्मुख कोण परस्पर ----- होते हैं।
- (2) यदि किसी त्रिभुज के दो कोण बराबर हों तो वह ----- त्रिभुज होगा।
- (3) समबाहु त्रिभुज का प्रत्येक कोण ----- अंश का होता है।
- (4) किसी समद्विबाहु त्रिभुज का एक शीर्ष कोण 100° का हो तो शेष बराबर कोण ----------- अंश के होंगे।
- (5) किसी त्रिभुज में सबसे बड़े कोण की सम्मुख भुजा सबसे ----- होती है।
- (6) किसी त्रिभुज में सबसे छोटे कोण की सम्मुख भुजा सबसे ----- होती है।

प्र.2. निम्नांकित तालिका में निर्देशानुसार रिक्त स्थानों की पूर्ति कीजिए:-

क्र. स.	क्का नाम	भुजा की माप	कोण की माप	शेष कोणों की माप
1.	Δ ABC	AB=AC=4 cm, $BC=$	∠B = 50	°∠C =,
		5 cm		∠A =
2.	ΔPQR	PQ=PR=5 cm, $QR=$	∠R =	∠P =,
		7 cm		∠Q = 45°
3.	Δ DEF	DE=DF= 6 cm, FE =	∠E =	∠D = 84°, ∠F
		8 cm		=
4.	ΔLMN	LM = MN = NL = 5	∠L =	∠M =,
		cm		∠N =

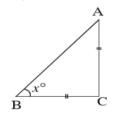

प्र.3. नीचे दिये गये ∆ XYZ में बराबर भुजाओं के नाम लिखिए। ∠Y का माप कितना होगा?



प्र.4. नीचे दिये गये ΔABC में BC= 5 सेमी, $\angle C$ = 40 0 एवं $\angle B$ = 50 0 है तो बताइए कि:-

- (1) क्या AB=ACयदि नहीं तो क्यों?
- (2) ABऔर AC में कौनसी भुजा बड़ी है?
- (3) बड़ी भुजा छोटे कोण के सम्मुख है या बड़े कोण के?

प्र.5. यदि ΔPQR में PQ = PRऔर $\angle R = 28^\circ$ हो तो त्रिभुज के शेष कोणों को ज्ञात कीजिए।



प्र.6. किसी त्रिभुज की दो भुजाएँ बराबर माप की हैं। यदि उनका एक सम्मुख कोण 30° हो तो शेष अन्य कोणों की माप ज्ञात कीजिए।

प्र.7. किसी समद्विबाहु त्रिभुज का शीर्ष कोण 70° का है। समान भुजाओं के सम्मुख कोण ज्ञात

कीजिए।

प्र.8. \triangle ABC एक समकोण त्रिभुज है जिसमें \angle C = 90° और CA=CB है। x का मान ज्ञात कीजिए।

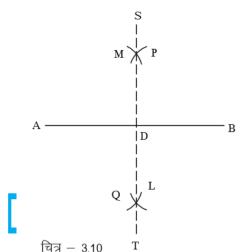
चित्र 3.9

P **√**43°

प्र.9. निम्नांकित चित्र में AB=AC यदि ∠B का माप ∠A के माप का दो गुना है तो सभी कोणों के माप ज्ञात कीजिए।

प्र.10. निम्नांकित चित्र में △PQR के तीनों कोणों के माप दिए हुए हैं। त्रिभुज की कौनसी दो भुजाएँ बराबर होगी? सबसे बड़ी भुजा का नाम भी लिखिए।

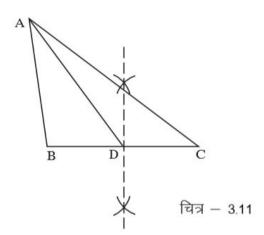
प्र.11. किसी त्रिभुज के कोणों में 2:3:4 का अनुपात है। त्रिभुज के तीनों कोणों की माप ज्ञात कीजिए।


त्रिभुज की माध्यिकाएँ(Median Of Triangle)

कागज का एक त्रिभुज काटिए। त्रिभुज के तीन शीर्षों में से काई भी दो शीर्ष को एक दूसरे के ऊपर रखकर कागज़ को मोड़ दीजिए। इस प्रकार त्रिभुज की एक भुजा को आपने दो समान भागों में मोड़ दिया है। भुजा जहाँ से मुड़ी है, वहां एक निशान लगा दीजिए।

इसी प्रकार त्रिभुज की दूसरी भुजा के दोनों शीर्षों को मिलाकर कागज़ को मोड़िए और भुजा के मध्य बिन्दु पर निशान लगाइए, ठीक इसी तरह से तीसरी भुजा को भी मोड़कर मध्य बिन्दु प्राप्त कीजिए। अब तीनों भुजाओं के मध्य बिन्दुओं को उनके सम्मुख शीर्ष से मिलाइए। त्रिभुज में तीनों रेखाएं एक ही

बिन्दु से होकर जाती है? जाँच कीजिए कि त्रिभुजों में सभी भुजाओं के मध्य बिन्दुओं को उनके सम्मुख शीर्ष से मिलाने पर तीनों रेखाएं एक दूसरे को एक ही बिन्दु पर काटती हैं।


त्रिभुज के अन्दर खींची गई ऐसी सरल रेखाएं जो किसी भुजा के मध्य बिन्दु से सम्मुख शीर्ष को मिलाती है, त्रिभुज की माध्यिका कहलाती है।

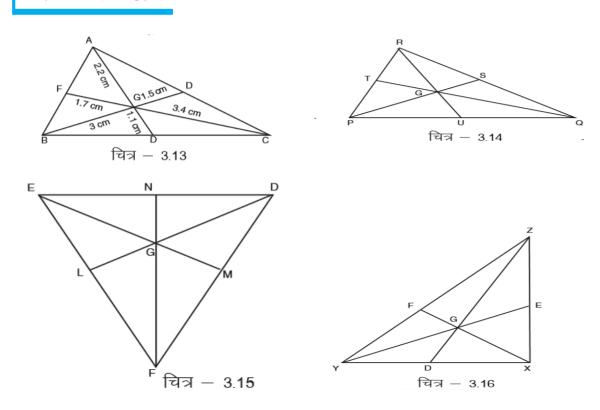
कागज़ का त्रिभुंज काटकर तथा उसे मोड़कर तो आपने भुजाओं का मध्य बिन्दु प्राप्त कर लिया था परन्तु आप अपनी कॉपी में त्रिभुंज खींचकर उसकी प्रत्येक भुंजा का मध्य बिन्दु कैसे प्राप्त करेंगे?

कक्षा टप् में आपने किसी रेखाखण्ड का लम्ब समद्विभाजक रेखा खींचना सीख लिया है। क्या आप एक रेखाखण्ड ।ठ का मध्य बिन्दु प्राप्त कर सकते हैं? आइए देखें:-

सर्वप्रथम हम दिए गए रेखाखंड AB की माप के आधे से अधिक माप के बराबर परकार को फैलाकर तथा बिन्दु A पर परकार को रखकर AB के ऊपर और नीचे की ओर एक ही माप का वृत्तखण्ड या चाप खीचते हैं जिन्हें चित्र क्रमांक 3.10 में L और M से दर्शाया गया है। पुनः बिन्दु B पर परकार को रखकर उसी माप का चाप 1ठ के ऊपर व नीचे खीचते हैं जिन्हें क्रमशः P और Q से दर्शाया गया है। अब वृत्तखण्डों के कटान बिन्दुओं को मिलाते हुए समद्विभाजक रेखा ST प्राप्त करते हैं जो रेखाखंड AB को बिन्दु D पर प्रतिच्छेद करती है। D, AB का मध्य बिन्दु है। इसी प्रकार त्रिभुज की भुजाओं का मध्य बिन्दु प्राप्त किया जा सकता है। संलग्न चित्र - 3.11 में एक त्रिभुज ABCदिया गया है। जिसकी भुजा BC का मध्य बिन्दु D है। शीर्ष A को सम्मुख भुजा के मध्य बिन्दु D से मिलाया गया है। रेखाखंड AD त्रिभुज ABC की एक माध्यिका है।

इस प्रकार त्रिभुज के तीनों शीर्षों को उनकी सम्मुख भुजा के मध्य बिन्दु से मिलाकर तीन माध्यिकाएँ प्राप्त कीजिए।

AC तथा BC के मध्य बिन्दु क्रमशः E और D है। इन मध्य बिन्दुओं को उनके सम्मुख शीर्षों से


मिलाकर दो माध्यिकाऐं BE एवं AD खींची गई है जो एक-दूसरे को बिन्दु O पर प्रतिच्छेद करती हैं। अब आप शीर्ष C को प्रतिच्छेद बिन्दु O से मिलाते हुए रेखाखण्ड BAI तक बढ़ाइए और पता लगाइए कि प्राप्त रेखाखंड जिस बिन्दु पर AB को मिलती है, वह भुजा AB का मध्य बिन्दु है या नहीं? तो क्या प्राप्त रेखाखण्ड त्रिभुज की तीसरी माध्यिका है?

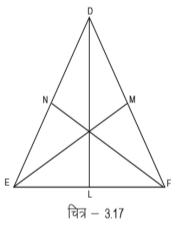
आप पायेंगे कि त्रिभुज की तीनों माध्यिकाएँ एक ही बिन्दु से होकर गुजरती हैं अर्थात "त्रिभुज की तीनों माध्यिकाएं संगामी होती है।" माध्यिकाओं के संगमन बिन्दु को त्रिभुज का केन्द्रक (Centroid) कहते हैं। $\triangle ABC$ का केन्द्रक O है।

अब अपनी कॉपी में कोई तीन त्रिभुज बनाकर उनकी माध्यिकाएं खींचिए एवं केन्द्रक प्राप्त कीजिए। आपने देखा होगा कि आप जब किसी त्रिभुज की कोई दो माध्यिकाएं खींच लेते है तो जिस बिन्दु पर दोनों माध्यिकाएं आपस में काटती हैं उसी बिन्दु से तीसरी माध्यिका भी गुज़रती हैं। तो क्या हम कह सकते हैं कि त्रिभुज का केन्द्रक पता करने के लिये हमें दो माध्यिकाओं की ही ज़रूरत होती हैं?

आइए त्रिभुज की माध्यिकाओं के बारे में कुछ और जानकारी प्राप्त करें।

क्रियाकलाप 3.

नीचे कुछ त्रिभुज दिये गये हैं जिनकी माध्यिकाएं	खींची गई हैं।	आप निर्देशानुसार	सारणी में रिक्त
स्थानों की पूर्ति कीजिए:-		· ·	

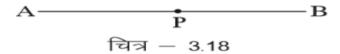

चि.स.	∆ नाम	शीर्ष से केन्द्रक ळ	अनुपात	चि.स.
		केन्द्रक ळ से सम्मुख		
3.13	Δ ABC	AG = 2.2 cm	GD = 1.1 cm	AG = GD 2 : 1
		BG = 3 cm	GE = 1.5 cm	BG = GE 2:1
		CG = 3.4 cm	GF = 1.7 cm	$CG = GF \ 2:1$
3.14	Δ PQR	PG =	GS =	PG :GS =
		QG =	GT =	QG :GT =
		RG =	GU =	RG :GU =
3.15	Δ DEF	DG =	GL =	DG :GL =
		EG =	GM =	EG :GM =
		FG =	GN =	FG :GN =
3.16	ΔXYZ	XG =	GF =	XG :GF =
		YG =	GE =	YG :GE =
		ZG =	GD =	ZG :GD =

उपरोक्त सारणी देखकर बताइए कि किसी त्रिभुज की प्रत्येक माध्यिका के लिए शीर्ष से केन्द्रक की दूरी और केन्द्रक से सम्मुख भुजा के मध्य बिन्दु की दूरी में अनुपात क्या है? क्या अनुपात प्रत्येक त्रिभुज में एक समान रहता है?

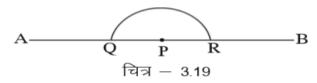
आप पायेंगे कि प्रत्येक त्रिभुज में यह अनुपात 2: 1 प्राप्त होता है। आप भी अपनी कॉपी पर विभिन्न माप के त्रिभुज बनाकर उनकी माध्यिकाएँ खींचिए और जांच कीजिए कि क्या केन्द्रक सभी माध्यिकाओं को 2: 1 अनुपात में विभाजित करता हैं?

आइए अब एक समबाहु त्रिभुज कम्थ् पर विचार करें जिसकी माध्यिकाएँ क्रमशः DL,EM और FN हैं। आप इनकी माध्यिकाओं को नापकर देखिए कि इनमें क्या सम्बन्ध है? समबाहु त्रिभुज की भुजाओं एवं उस पर खींचे गये माध्यिकाओं के बीच बने कोणों को भी नापिए। क्या इन कोणों में कोई समानता है?

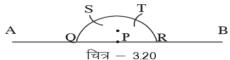
आप पायेंगे कि समबाहु त्रिभुज की माध्यिकाएँ आपस में बराबर होती हैं और प्रत्येक माध्यिका सम्बन्धित भुजा पर लम्ब होती है। अब आप एक समद्विबाहु त्रिभुज बनाकर समान भुजाओं पर माध्यिकाएँ खींचिए। जांच कीजिए कि क्या दोनों माध्यिकाओं में कोई सम्बन्ध है? यदि हाँ तो उसे लिखिए।


किसी रेखाखण्ड पर दिये गये बिन्दु से लम्ब खींचना

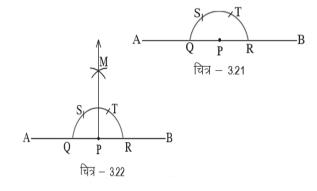
किसी रेखाखण्ड़ पर दिये गए बिन्दु से लम्ब खींचने की दो स्थितियां हो सकती है -


- (1) जब बिन्दु रेखाखण्ड पर स्थित हो, या
- (2) जब बिन्दु रेखाखण्ड के बाहर स्थित हो।

पहली स्थिति: जब बिन्दु रेखाखण्ड पर स्थित है। रचना के पद:

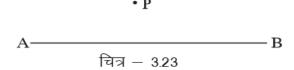

(1) सर्वप्रथम एक रेखाखण्ड ।ठ खींचिए जिस पर बिन्द्र च चिन्हित कीजिए।

(2) बिन्दु च् पर परकार की नोक रखिए तथा किसी भी नाप की त्रिज्या लेकर रेखाखण्ड ।ठ पर चाप काटिए जो कि रेखाखण्ड ।ठ को दो बिन्दुओं फ तथा त् पर काटता है।



(3) अब R पर परकार रखिए और उसी माप की त्रिज्या का चाप 'T' अर्द्धवृत्त पर खींचिए। पुनः 'T' पर परकार रखकर उसी माप की त्रिज्या का एक और चाप 'S' उसी अर्द्धवृत्त पर खींचिए। s T

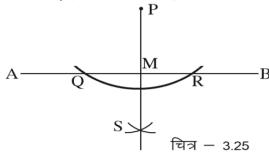
(4) पुनः बिन्दुओं S व T पर परकार को रखकर उसी माप के दो चाप ऊपर की ओर खींचिए जो कि आपस में बिन्दु M पर काटते हैं।


(5) बिन्दु M को P से मिला लीजिए।


प्राप्त रेखाखण्ड PM ही अभीष्ट लम्ब रेखा है। अर्थात् PM ⊥ AB दूसरी स्थिति: जब बिन्दु रेखाखण्ड के बाहर स्थित है।

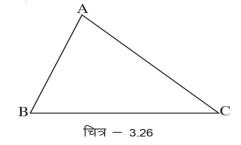
रचना के पद:

(1) सर्वप्रथम रेखाखण्ड ।ठ खींचिए जिसके बाहर बिन्दु च् चिन्हित कीजिए।

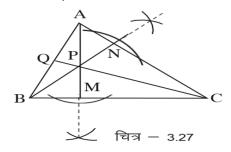


(2) अब बिन्दु P पर परकार की नोक रखिए तथा उतनी त्रिज्या की माप रखिए जिससे जो चाप बने वह रेखाखण्ड को दो बिन्दुओं Q व R पर काटे।

- (3) अब क्रमशः बिन्दु Q तथा R पर परकार रखते हुए दो चाप नीचे की ओर खींचिए जो कि आपस में बिन्दु S पर काटें।
- (4) बिन्दु S को P से मिलाइए। रेखाखण्ड PS, AB को M पर काटता है।


अतः प्राप्त रेखाखण्ड PM ही अभीष्ट लम्ब रेखा है। अर्थात् PM \perp AB

त्रिभुज के शीर्ष लम्ब


अभी हमने एक बिन्दु जो कि रेखाखण्ड पर स्थित है, और दूसरा जो कि बाहर स्थित है, से लम्ब खींचना सीखा है। इसी प्रकार हम आसानी से किसी त्रिभुज के शीर्ष से सम्मुख भुजा पर भी लम्ब खींच सकते है।

त्रिभुज के लम्ब केन्द्र की रचना के चरण:

(1) एक त्रिभुज ABC बनाइये।

(2) प्रत्येक शीर्ष से सम्मुख भुजा पर हमें लम्ब खींचना है। ऊपर दर्शाई गई प्रक्रिया के अनुसार बिन्दु A से उसकी सम्मुख भुजा BC पर, बिन्दु B से उसकी सम्मुख भुजा AC पर लम्ब खींचिए।

(3) AB व BN के प्रतिच्छेद बिन्दु P को C से मिलाइए तथा CP को आगे बढ़ाने पर यह

AB को Q पर काटता है। ∠AQC को मापिए।

आप देखेंगे कि $\angle AQC = 90^\circ$ अर्थात् $CQ \perp AB$ इस प्रकार CQ तीसरा शीर्ष लम्ब है तथा तीनों शीर्षलम्ब संगामी है।

इसी प्रकार कुछ और त्रिभुज बनाकर जांच कीजिए कि क्या प्रत्येक त्रिभुज के शीर्षलम्ब संगामी

त्रिभुज के शीर्षलम्बों के संगमन बिन्दु को त्रिभुज का लम्बकेन्द्र कहते हैं।

आपने देखा होगा कि आप जब किसी त्रिभुज के कोई दो शीर्षलम्ब खींच लेते हैं तो जिस बिन्दु पर दोनों शीर्ष लम्ब आपस में काटते है उसी बिन्दु से तीसरा शीर्ष लम्ब भी गुजरता है। तो क्या हम कह सकते हैं कि त्रिभुज का लम्ब केन्द्र पता करने के लिए दो शीर्ष लम्ब की ही जरूरत होती है?

क्रियाकलाप 4.

आप एक अधिक कोण त्रिभुज तथा विषमबाहु त्रिभुज अपनी कॉपी में बनाइये और ऊपर दर्शाये गये तरीके से दोनों त्रिभुजों के प्रत्येक शीर्ष से उनकी सम्मुख भुजाओं पर लम्ब खींचिए। अब आप एक समकोण त्रिभुज पर भी यही प्रक्रिया अपनाइये। आप किस परिणाम पर पहुँचे, लिखिए।

प्रश्नावली 3.2

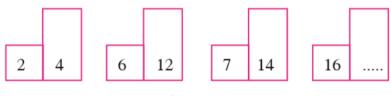
- 1. रिक्त स्थानों की पूर्ति कीजिए -
 - (A) त्रिभुज की माध्यिका वह रेखाखण्ड है, जो उसके किसी शीर्ष को सम्मुख भुजा के ------ से मिलाती है।
 - (B) त्रिभुज का शीर्षलम्ब वह रेखाखण्ड है, जो उसके किसी शीर्ष से सम्मुख भुजा पर ----- हो।
 - (C) त्रिभुज की माध्यिकाएँ ----- होती है।
 - (D) त्रिभुज की माध्यिकाओं के प्रतिच्छेदन बिन्दु को ----- कहते हैं।

- (E) त्रिभुज के शीर्षलम्बों के प्रतिच्छेदन बिन्दु को ----- कहते हैं।
- (F) त्रिभुज का केन्द्रक माध्यिका को -----अनुपात में विभाजित करता है।
- 2. अपनी कॉपी में दो त्रिभुज बनाकर केन्द्रक ज्ञात कीजिए।
- 3. समकोण त्रिभुज बनाकर उसका लम्ब केन्द्र ज्ञात कीजिए।
- 4. आप एक त्रिभुँज बनाइए। तीनों माध्यिकाओं की रचना कीजिए। क्या तीनों माध्यिकाएं संगामीहैं।

हमने सीखा

- 1. त्रिभुज की सबसे बड़ी भुजा के सम्मुख कोण का माप सबसे बड़ा होता है तथा सबसे छोटी भुजा के सम्मुख कोण का माप सबसे छोटा होता है।
- 2. त्रिभुज की भुजाओं के मध्य बिन्दुओं को उनके सम्मुख शीर्षों से मिलाने पर मध्यिकायें प्राप्त होती है तथा सभी मध्यिकाये एक दूसरे को केन्द्रक पर 2:1 के अनुपात में काटती है।
- 3. त्रिभुज के शीर्ष बिन्दु से सम्मुख भुजा पर खींचा गया लम्ब शीर्ष लम्ब कहलाता है तथा त्रिभुज के सभी शीर्ष लम्ब संगामी होते हैं।

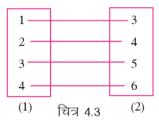
अध्याय चार



दिमागी कसरत

नीचे कुछ आकृतियाँ दी गई है, उन्हें क्रमवार ध्यान से देखकर उनसे संबंधित प्रश्नों के उत्तर अपनी कापी में लिखिए-

- 1. 5 वें क्रम की आकृति कैसी होगी? बनाइए।
- 2. 5 वीं आकृति बनाने के लिए आपने क्या सोचा?
- 3. क्या आकृतियों की क्रम संख्या एवं उनके भुजाओं के बीच कोई सम्बन्ध है?
- 4. क्या आप बता सकते हैं कि 10वें क्रम की आकृति में कितनी भुजाएँ होगी?
- 5. यह आपने कैसे बताया?
- 6. क्या किसी आकृति के स्थान का क्रम ज्ञात होने पर उसकी भुजाओं की संख्या ज्ञात कर सकते है?
- क्या सम्बन्ध बनाएंगे?
 अब इन चौकोर खानों में लिखे गए संख्याओं पर विचार करें-

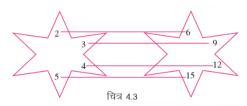

चित्र 4.2

चित्र में दो-दो खानों के 4 जोड़े बने हैं, क्या प्रत्येक जोड़े की दोनांे संख्याओं के बीच कोई सम्बन्ध है?

चौथे जोड़े के दूसरे (दायीं ओर खाने) में कौन-सी संख्या होगी ?

इस समस्या का हल आपने कैसे सोचा ?

यदि पहले (बायीं ओर खाने) में 35 हो तो उसके दायीं ओर वाले खाने में कौन-सी संख्या होगी? अब निम्न खानों में लिखी गई संख्याओं पर विचार करें-



क्या बायीं ओर के खाने (क्र. 1) एवं दायीं ओर के खाने (क्र. 2) के बीच कोई सम्बन्ध है? दायीं ओर के खाने की प्रत्येक संख्या बायीं ओर के खाने की संगत संख्या में 2 जोड़ कर प्राप्त की जा सकती है। अर्थात 1+2 = 3, 2+2 = 4, 3+2 = 5, 4+2 = 6

यदि बायीं ओर के खाने में 5 हो तब उसके लिए दायीं ओर के खाने में कौन सी संख्या होगी?

यदि बायीं ओर के खाने की संख्या ल हो तो उसके लिए दायीं ओर के खाने में कौन सी संख्या होगी?

इन घेरों पर भी विचार करें -

इन घेरों की प्रत्येक संख्या दूसरे घेरे की किसी संख्या से जुड़ी है। यह जोड़ियां लाइन से दिखाई गई है।

दोनों घेरों के अन्दर की इन संख्याओं के बीच किस प्रकार का सम्बन्ध है?

यदि बायीं ओर के घेरे में कोई संख्या 7 हो तो दायीं ओर के घेरे में उससे संबंधित कौन सी संख्या होगी ?

यदि बायीं ओर के घेरे में कोई संख्या ग हो तब उसके लिए दायीं ओर के घेरे में कौन-सी संख्या होगी?

इस सम्बन्ध में बायीं ओर 2 रखने पर दायीं ओर 6 प्राप्त होता है, उसी प्रकार बायीं ओर 5 रखने पर दायीं ओर 15 प्राप्त होता है ।

क्रियाकलाप-1

आप कह सकते हैं कि बायीं ओर की प्रत्येक संख्या के लिए उसके मान के तीन गुने मान की संख्या दायीं ओर के घेरे में है।

आप भी कुछ इसी प्रकार की संख्याओं के दो समूह लेकर उनके बीच सम्बन्ध स्थापित करने का प्रयास करें ।

जैसे- 1, 3, 5, 7, तथा 2, 4, 6, 8,

ऐसे और भी संबंध सोच कर घेरे बनाएं।

ऐसे कुछ घेरे अपने साथियों को दें और उनसे कहें कि वह बताएं कि उन घेरों की संख्याओं के बीच क्या संबंध है?

कक्षा-6 में हमने चर राशि और समीकरण दोनों के बारे में सीखा है। आइए, उसे थोड़ा दोहरा लें। हमने इस तरह के सवाल भी देखे है-

- 1. 100 में से कितना घटाएं कि 75 बचे ?
- 2. 32 में कितना जोड़ें कि 50 बन जाए ?
- 3. 12 के आधे में कितना जोडे कि 10 बन जाए ?
- 4. 5 में कौन-सी संख्या का गुणा करें कि 40 प्राप्त हो ? प्रत्येक प्रश्न में एक राशि को अज्ञात मान कर हम हल प्राप्त कर सकते हैं। जैसे प्रश्न (□) पर विचार करें-माना कि 100 में से x घटाने पर 75 बचते हैं अर्थात 100-x = 75 क्या हम इस प्रश्न पर निम्न रूप में भी विचार कर सकते हैं?

75 में कितना जोड़ें कि 100 प्राप्त हो ? माना 75 में x जोड़ने पर 100 प्राप्त होते हैं अर्थात 75 + x = 100

दोनों स्थितियों में अज्ञात राशि । का मान समान प्राप्त होता है। अर्थात 100 में से 25 घटाएं तो 75 प्राप्त होगा और 75 में 25 जोड़ने पर 100 प्राप्त होगा। अर्थात् हम इस कथन को दो तरह से विष्लेषित कर सकते हैं। शेष सवालों में भी हम हर कथन को दो तरह से पढ़ सकते हैं।

यहाँ । का प्रयोग अज्ञात राशि के स्थान पर किया गया है। क्या x के स्थान पर y,z अथवा किसी अन्य चरांक का प्रयोग किया जाए तब भी मान समान होगें?

100 - x = 75

100 - y = 75

100 - z = 75

क्या शेष प्रष्नों को भी इसी प्रकार सम्बन्धों के रूप में लिखा जा सकता है? करके देखें। कैसे सम्बन्ध ढूंढ़ पाएंगे?

व्यंजक और समीकरण

उपरोक्त सभी समस्याओं में दो व्यंजक है तथा किसी कथन द्वारा इन व्यंजकों को समान किया गया है। दो व्यंजकों के बीच समानता के कथन को समीकरण कहते हैं। जैसे कि ऊपर के उदाहरण में एक व्यंजक 100-□ है और दूसरा है 75

यहाँ बराबर का चिन्ह यह स्पष्ट करता है कि प्रत्येक स्थिति में कथन के बायीं ओर एवं

दायीं ओर की राशियाँ आपस में बराबर होंगी।

इस प्रकार के **बीजीय कथन जिनमें बराबर का चिन्ह होता है, समीकरण कहलाता है**। बराबर चिन्ह के बायीं ओर की समस्त राशियों को समीकरण का बायां पक्ष एवं दायीं ओर की समस्त राशियों को समीकरण का दायां पक्ष कहते हैं।

कुछ बीजीय व्यंजक वाले समानता के कथनों पर विचार करें, ये कथन समीकरण हैं अथवा नहीं। यह भी बताएं कि यदि यह समीकरण नहीं हैं तो क्यों?

- (i) 3x + 5 = -9
- (ii) 7x + 4 > 10
- (iii) x 2 < -5
- (iv) x = 0
- (v) y = 3x
- (vi) x + y = 3
- (vii) x = 2y + z + 2

कथन (i) एवं (ii)में अज्ञात राशियों या चरों की संख्या कितनी है?

जिन समीकरणों में अज्ञात राशियों अर्थात चरों की संख्या एक हो उसे एक चर वाली तथा यदि अज्ञात राशियों (चरों) की संख्या दो या तीन हो उसे क्रमशः दो चरों वाले तथा तीन चरों वाली समीकरण कहते हैं।

एक चर वाले समीकरणों का हल

रीता ने हमीदा से पूछा ''क्या कोई ऐसी संख्या सोच सकती हो जिसका सात गुना बराबर है, उस संख्या में चार जेाड़ कर प्राप्त योगफल के तीन गुना के ?''

क्या आप संख्या सोच सकते हैं ?

सोची संख्या को ज्ञात करने के लिए हम पहले समीकरण बनायेंगे फिर इसे हल करेंगे। माना कि अज्ञात संख्या ग है, तो कथनानुसार,

$$3(x+4) = 7x$$
या $3x + 12 = 7x$ (कोष्ठक हल करने पर)
या $3x + 12 - 12 = 7x - 12$ (दोनों पक्षों में 12 घटाने पर)
या $3x = 7x - 12$
या $3x = 7x - 12$ (दोनों पक्षों में 7ग घटाने पर)
या $-4x = -12$

इस प्रकार अज्ञात राशि का मान समीकरण हल करके ज्ञात किया जा सकता है। आइये उत्तर की जांच करते हैं।

1. सोची गई संख्या 3 है।

- 2. 3 में 4 जोड़ने पर 3 +4 = 7 प्राप्त हुआ।
- 3. 7 का 3 गुणा करने पर 3 x 7 = 21 प्राप्त हुआ।
- 4. इस प्रकार 21 सोची गई संख्या 3 का 7 गुना है। आपने समीकरण को हल करने के कुछ तरीके कक्षा 6वीं में सीखा है। आइये इन्हें फिर एक बार दोहराएं -
 - 1. समीकरण के दोनों पक्ष में एक ही संख्या जोड़ सकते है।
 - 2. समीकरण के दोनों पक्ष में एक ही संख्या घटा सकते है।
 - 3. समीकरण के दोनों पक्ष में एक ही शून्येत्तर संख्या का गुणा कर सकते है।
 - 4. समीकरण के दोनों पक्ष में एक ही शून्येतर संख्या का भाग दे सकते है।

उपरोक्त तरीकों का प्रयोग इस प्रकार करते हैं कि समीकरण के एक पक्ष में केवल अज्ञात चर रह जाती है।

उदाहरण 1. समीकरण को हल कीजिए-

$$3x + 2 = 17$$

हल दिया गया समीकरण निम्नलिखित है -

$$3x + 2 = 17$$

[बायें पक्ष में 3x = 2 है जिसमें चर राशि ग है। ग का मान जात करना है।]

$$=> 3x + 2 - 2 = 17 - 2$$
 ;(दोनों पक्षों में 2 घटाने परद्ध)

$$=> 3x = 15$$

 $\frac{3x}{3} = \frac{15}{3}$ (दोनों पक्षों में 3 का भाग देने पर)

$$x = 5$$

अतः दिए गए समीकरण का अभीष्ट हल x = 5 है।

हल में हम देखते हैं कि बायें पक्ष में 2 को घटाने पर पूर्णांक षून्य हो जाता है, वहीं दायें पक्ष में -2 जोड़ दिया गया है | इसे इस प्रकार भी कह सकते हैं कि बायें पक्ष की राशि को दाएं पक्ष में ले जाने पर उसका चिन्ह बदल जाता है | पक्षान्तर की प्रक्रिया मे गुणा का पक्ष बदलने पर भाग तथा भाग का पक्ष बदलने पर गुणा हो जाता है जैसे 3x = 15 में 3 का पक्ष बदलने

पर
$$x = \frac{13}{3}$$
 हो जाता है।

दूसरी विधि- समीकरण के हल को निम्न प्रकार से लिख सकते हैं-

$$3x + 2 = 17$$
=> $3x = 17 - 2$ (+2 का पक्ष बदलने परद्ध)
=> $3x = 15$
=> $x = \frac{15}{3}$ (x में 3 का गुणा है, पक्ष बदलने पर भाग हो जाता है।)
=> $x = 5$

अतः दिए गए समीकरण का अभीष्ट हल x = 5 है।

जाँचः-

बायां पक्ष =
$$3x + 2$$

= $3(5) + 2(x)$ का मान 5 रखने पर)
= $15 + 2 = 17$

दायां पक्ष = 17

बायां पक्ष = दायां पक्ष।

अतः हमारा हल x = 5 सही है ।

उदाहरण 2. समीकरण 4x + 7 = 2x - 11 को हल कीजिए ।

दिया गया समीकरण-हल:

$$4x+7 = 2x-11$$

 $4x = 2x-11-7$ (7 का पक्ष बदलने परद्ध)

$$=> 4x = 2x - 18$$

$$=> 4x-2x=-18$$
 (2x का पक्ष बदलने पर)

$$=> 2x = -18$$

=>
$$x = \frac{-18}{2}$$
 (बाएं पक्ष में 2 गुणा में है जो पक्ष बदलने पर भाग हो जाता है) $x = -9$

अतः दिए गए समीकरण का अभीष्ट हल x = -9 है।

जाँचः-

बायां पक्ष
$$= 4x + 7$$

$$= 4(-9) + 7 \qquad [x \text{ का मान रखने } \text{ पर}]$$

$$= -36 + 7 \qquad = -29$$
और दायां पक्ष
$$= 2x - 11$$

$$= 2(-9) - 11 \qquad (x \text{ का मान रखने } \text{ पर})$$

$$= -18 - 11$$

$$= -29$$

अतः बायां पक्ष त्र दायां पक्ष

अतः हमारा हल x = -9 सही है ।

उदाहरण 3. समीकरण हल कीजिए

$$\frac{x}{10} + 12 = 17$$

हल दिए गए समीकरण $\frac{x}{10} + 12 = 17$

$$=> \frac{x}{10} = 17-12$$
 (12 का पक्ष बदलने पर)
 $=> \frac{x}{10} = 5$
 $=> x = 5 \times 10$ (बायें पक्ष में ग में 10 का भाग है जो पक्ष बदलने पर गुणा में हो जाता है)
 $=> x = 50$

जाँचः- उत्तर की जांच स्वयं करके देखिए।

उदाहरण 4.
$$\frac{x}{5} + \frac{x}{20} = 10$$
 हल
$$\frac{x}{5} + \frac{x}{20} = 10$$
 $= > \frac{(4)x + (1)x}{20} = 10$ (5 तथा 20 का ल.स. लेने पर)
$$= > \frac{4x + x}{20} = 10$$
 $= > \frac{5x}{20} = 10$ $= > 5x = 10 \times 20$ (बायें पक्ष में 20 भाग मे है, पक्ष बदलने पर वह गुणा में हो जाता है)
$$= > 5x = \frac{200}{5}$$
 (बायें पक्ष में 5 गुणा में है पक्ष बदलने पर भाग में हो जाता है)
$$= > x = 40$$

उत्तर की जांच स्वयं करके देखिए।

उदाहरण 5. समीकरण हल कीजिए -

$$\frac{2}{5}$$
 $(x+10)=2x+3$

हल दिए गए समीकरण

$$\frac{2}{5}(x+10) = 2x+3$$
=> $\frac{2}{5}x + \frac{2}{5} \times 10 = 2x+3$ (बाएं पक्ष को सरल करने पर)
=> $\frac{2}{5}x + 4 = 2x+3$
=> $\frac{2}{5}x - 2x = 3 - 4$ (2x तथा +4 का पक्ष बदलने पर)
=> $\frac{2x}{5} - 2x = -1$

$$=> \frac{-8x}{5} = -1$$

$$=> -8x = -1 \times 5$$

$$=> -8x = -5$$

$$=> x = -\frac{5}{-8}$$

$$=> x = \frac{5}{8}$$

अतः दिए गए समीकरण का अभीष्ट हल $x=\frac{5}{8}$ है

अतः किसी भी समीकरण को हल करते समय सबसे पहले चर तथा अचर पदों को अलग-अलग पक्षों में ले जाकर जोड़-बाकी करके हल करते हैं। इसके बाद अज्ञात राशि (चर) का मान ज्ञात करने के लिए यदि चर राशि के साथ कोई संख्या गुणा में है तो पक्ष बदलने पर वह भाग में तथा यदि चर राशि के साथ कोई संख्या भाग में है तो पक्ष बदलने पर वह गुणा में बदल जाती है।

प्रश्नावली 4.1

- रिक्त स्थानों की पूर्ति कीजिए-प्र.1
 - समीकरण 2x = 4 का हल x = ------(1)
 - समीकरण $\frac{..}{3} = 3$ का हल x = -----(2)

 - समीकरण 5y=2y+15 का हल y = ------
- समीकरण को हल कीजिए एवं उत्तर की जाँच कीजिए-प्र.2

(i)
$$7x+15=3x+31$$

(ii)
$$3(x-3) = 5(2x-1)$$

(iii)
$$\frac{2y+9}{3} = 3y+10$$

(iii)
$$\frac{2y+9}{3} = 3y+10$$
 (iv) $2(x-1)-3(x-2) = 4(x-3)+5(x-4)$

(v)
$$\frac{2x}{3} + \frac{5}{6} = \frac{13}{6}$$
 (vi) $\frac{x+2}{3} + 5 = 17$

$$\frac{x+2}{3}$$
 +5=17

(vii)
$$3y + \frac{5}{8} = \frac{11}{8}$$
 (viii) $\frac{3m+2}{3} = \frac{17}{3}$

(viii)
$$\frac{3m+2}{3} = \frac{17}{3}$$

(ix)
$$2.5x + 3.5 = 6$$

समस्याओं को हल करने में समीकरण का उपयोग

समस्याओं को हल करने में समीकरण का उपयोग

दैनिक जीवन से सम्बन्धित प्रष्नों को हल करने में अंकगणितीय विधि से समय अधिक लगता है परन्तु उन्हीं प्रष्नों को बीजगणित में चर राशि की सहायता से हल करने में सुविधा

होती है।

किन्हीं दो राशियों के बीच संबंध दर्षाने के लिए हम अपनी भाषा को बीजगणित की भाषा में बदल देते हैं। इससे प्रश्न को समझने एवं हल करने में आसानी होती है। आइए इसे एक उदाहरण से देखते हैं-

''किसी प्राकृत संख्या में 5 जोड़ने से उसका मान 9 हो जाता है तो संख्या ज्ञात कीजिए।''

इसे हम ''भूल एवं प्रयत्न'' विधि से हल करेंगे। चूँिक प्राकृत संख्या 9, 10 से कम है। अतः प्राकृत संख्या 1 से प्रारंभ करते हैं।

अतः अभीष्ट संख्या 4 होगी। यदि प्रश्न में बड़ी संख्या दी गई हों, तो इस विधि से हल करने में अधिक समय लगता है। यदि इसे बीजगणित की भाषा में बदलकर हल करें, तो सरल भी है और समय की भी बचत होती है।

माना कि वह अभीष्ट संख्या ग है।

अतः शर्तानुसार
$$x+5=9$$

=> $x=9-5$
=> $x=4$

इस विधि से बड़ी संख्याओं के प्रष्नों को हल करने में सुविधा होती है।

उदाहरण 6. नीलिमा किसी एक स्थान से दूसरे स्थान के लिए जाती है। पहले घ्ंाटे में वह एक निष्चित दूरी चलती है। दूसरे घंटे में पहले घंटे से 5 किमी कम दूरी चलती है। तीसरे घंटे में दूसरे घंटे से 8 किमी कम दूरी चलती है। यदि कुल दूरी 48 किमी. हो तो नीलिमा द्वारा पहले घंटे में चली दूरी जात कीजिए-

हल: माना कि नीलिमा पहले घंटे में
$$x$$
 दूरी चलती है । तो नीलिमा द्वारा दूसरे घंटे में चली दूरी $=x-5$ तथा तीसरे घंटे में चली दूरी $x-5-8=x-13$

प्रश्नानुसार, कुल दूरी = 48 कि.मी.

$$\Rightarrow x + x - 5 + x - 13 = 48$$
 $\Rightarrow x + x + x = 48 + 5 + 13$
 $\Rightarrow 3x = 66$
 $\Rightarrow x = \frac{66}{3}$
 $\Rightarrow x = 22$ किमी

नीलिमा द्वारा पहले घंटे में चली गई दूरी 22 किमी है।

उदाहरण 7. एक संख्या दूसरी संख्या से 5 अधिक हैं तथा दूसरी संख्या का 9 गुना पहली संख्या के 4 गुने के बराबर है तो वे संख्याएं ज्ञात कीजिए-

हलः माना दूसरी संख्या x है ।

तो पहली संख्या = x + 5तथा दूसरी संख्या का 9 गुना = 9xपहली संख्या का 4 गुना = 4(x + 5)अतः दिए गए षर्त से,

$$9x = 4 (x + 5)$$
=> $9x = 4x + 20$
=> $9x - 4x = 20$
=> $5x = 20$
=> $x = \frac{20}{5}$
 $x = 4$

अतः दूसरी संख्या x = 4पहली संख्या = x+5= 4+5 = 9

अतः अभीष्ट संख्यायें 4 और 9 हैं।

उदाहरण 8. तीन लगातार प्राकृत संख्याओं का योगफल 63 है तो वे संख्याएं ज्ञात कीजिए**हलः** माना कि तीन लगातार प्राकृत संख्याएँ क्रमशः x, x+1 और x+2 हैं ।

;क्योंकि लगातार प्राकृत संख्याओं में 1 का अन्तर होता है।)

शर्त के अनुसार
$$x + x + 1 + x + 2 = 63$$

 $\Rightarrow x + x + x + 1 + 2 = 63$
 $\Rightarrow 3x + 3 = 63$
 $\Rightarrow 3x = 63 - 3$
 $\Rightarrow 3x = 60$
 $\Rightarrow x = \frac{60}{3} = 20$
 $\Rightarrow x = 20$ तो $x + 1 = 21$ एवं $x + 2 = 22$

अतः संख्याएं क्रमशः 20, 21 एवं 22 होंगी।

उदाहरण 9. दो अंकों की संख्या में दहाई का अंक इकाई के अंक का दुगुना है। यदि दोनों अंकों का योग 9 हो तो संख्या ज्ञात कीजिए-

हलः माना इकाई का अंक x है। तो दहाई का अंक 2x होगा।

शर्त से
$$x+2x = 9$$

=> $3x = \frac{9}{3}$
=> $x = 3$

अतः इकाई का अंक = 3

दहाई का अंक
$$= 2 \times x$$
$$= 2 \times 3$$
$$= 6$$

अतः वह अभीष्ट संख्या ६३ होगी ।

उदाहरण 10. एक समद्विबाहु त्रिभुज में आधार की माप प्रत्येक बराबर भुजाओं की माप से 3 सेमी. कम है । यदि त्रिभुज का परिमाप 21 सेमी. हो तो प्रत्येक भुजा की लम्बाई ज्ञात कीजिए-**हल** माना बराबर भुजा में से प्रत्येक की माप ग सेमी है।

तो आधार की माप (x-3) सेमी होगी।

त्रिभुज का परिमाप = तीनों भुजाओं का योग

$$21 = x+(x-3)+x$$

$$21 = 3x-3$$

$$21+3=3x$$

$$24 = 3x$$

$$\frac{24}{3} = x$$

$$8 = x$$

अतः त्रिभ्ज की भ्जाएँ क्रमशः 8,5 और 8 सेमी होंगी।

उदाहरण 11. षीला रंजीत से 12 वर्ष बड़ी है, 6 वर्ष बाद षीला की आयु रंजीत की आयु की दुगुनी हो जाएगी। षीला एवं रंजीत की वर्तमान आयु ज्ञात कीजिए।

हल माना रंजीत की वर्तमान आयु 🛭 वर्ष है।

तो षीला की वर्तमान आयु x+12 वर्ष होगी।

6 वर्ष बाद रंजीत की आयु = (x+6) वर्ष

तथा 6 वर्ष बाद षीला की आयु = x+12+6 वर्ष = (x+18) वर्ष

अब षर्त के अनुसार, 6 वर्ष बाद षीला की आयु त्र 2 × (6 वर्ष बाद रंजीत की आयु)

$$x+18 = 2 (x+6)$$

 $x+18 = 2x+12$
 $x-2x = 12-18$
 $-x = -6$
 $x = +6$

अतः रंजीत की वर्तमान आय् = 6 वर्ष

षीला की वर्तमान आयु
$$= 6 + 12$$
 $= 18$ वर्ष

उदाहरण 12. किसी कक्षा में अध्ययनरत छात्र-छात्राओं की संख्या 3: 5 में है । यदि कक्षा में कुल छात्र-छात्राएँ 80 हों, तो छात्र एवं छात्राओं की वास्तविक संख्या ज्ञात कीजिए।

हलः मान लो छात्रों एवं छात्राओं की संख्या क्रमशः 3x एवं 5x है

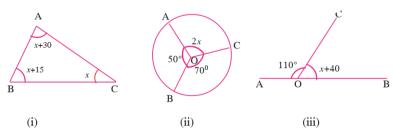
[अनुपात के प्रष्नों को हल करने के लिए केवल अनुपात के साथ चर पद लेते हैं।]

अतः
$$3x + 5x = 80$$

 $8x = 80$
 $x = \frac{80}{8}$
 $x = 10$

अतः कक्षा में छात्रों की संख्या $= 3x = 3 \times 10 = 30$

तथा छात्राओं की संख्या = 5x $= 5 \times 10$


अतः कक्षा में कुल 30 छात्र और 50 छात्राएँ हैं।

प्रश्नावली 4.2

- 1. निम्नलिखित प्रश्नों में दी गईं शर्तों से समीकरण बनाइएः-
 - (1) किसी संख्या के $\frac{-}{3}$ भाग का मान 24 है ।
 - (2) पिता की उम्र पुत्र के उम्र की दुगुनी है तथा दोनों की उम्र का योग 51 है।
 - (3) किसी संख्या के $\overline{10}$ भाग का मान 2500 रू. है ।
 - (4) लगातार दो संख्याओं का योग 15 है।
 - (5) किसी परिमेय संख्या का हर, अंश से 5 अधिक है एवं परिमेय संख्या $\frac{19}{24}$ है।
- 2. किसी संख्या के 7 गुने में 3 जोड़ने से उसका मान 31 हो जाता है, संख्या ज्ञात कीजिए।
- 3. राम और श्याम में 300 रू. को इस प्रकार बांटिए कि राम को श्याम को मिले रूपये के तीन गुने से 100 रू. कम मिले।
- 4. वह संख्या ज्ञात कीजिए जिसमें 4 का गुणा करने पर प्राप्त संख्या उस संख्या से 42 अधिक हो जाती है।
- 5. किसी आयत की लम्बाई चौड़ाई से 3 अधिक है। यदि आयत का परिमाप 30 सेमी हो तो आयत की लम्बाई एवं चौड़ाई ज्ञात कीजिए।
- 6. किसी आयत की लम्बाई और चौड़ाई का अनुपात 2:3 है, यदि आयत का परिमाप 90

सेमी हो, तो आयत की लम्बाई एवं चौड़ाई ज्ञात कीजिए।

- 7. 35 विद्यार्थियों की एक कक्षा में बालिकाओं की संख्या, बालकों की संख्या का $\frac{1}{5}$ गुनी है। कक्षा में बालकों की संख्या ज्ञात कीजिए।
- 8. किसी संख्या के चौथाई में 12 जोड़ने पर 20 प्राप्त होता है। वह संख्या जात कीजिए।
- 9. दो क्रमांगत संख्याओं का योग 35 है। उन संख्याओं को ज्ञात कीजिए ?
- 10. नमता के पिता की आयु नमता की आयु की तिगुनी है यदि उन दोनों की आयु का योग 48 वर्ष है तो उन दोनों की आयु ज्ञात कीजिए ?
- 11. खेल के मैदान के लिए अरक्षित एक आयताकार भूखण्ड की लंबाई एवं चौड़ाई में 11:4 का अनुपात है। ग्राम पंचायत इसके चारों ओर 1 लाईन बाड़ लगाने के लिए 100रु. प्रतिवर्ग मीटर की दर से 75,000 रुपये खर्च करती है। भूखण्ड की माप ज्ञात कीजिए।
- 12. निम्न चित्रों में x का मान अंशों में ज्ञात कीजिए-

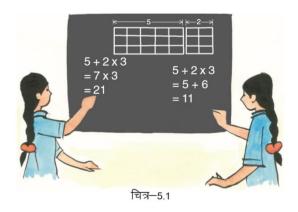
हमने सीखा

- 1. वह राशि जिनके संख्यात्मक मान निश्चित नहीं होते हैं चर राशि कहलाते हैं। (जैसे x=1,
- 2, 3 आदि और y= 1, 2, 3 यहाँ x और y चर राशि है।
- 2. यदि बीजीय व्यंजकों के बीच समता (या बराबर) का चिन्ह हो, तो उसे समीकरण कहते हैं।
- 3. किसी समीकरण में दी गई अज्ञात राशि का मान ज्ञात करना समीकरण को हल करना कहलाता है।
- 4. समीकरण के दोनो पक्षों में समान राशि जोड़ने, घटाने, गुणा करने और भाग करने से समीकरण का मान नहीं बदलता।
- 5. अज्ञात राशि का वह मान, जो दिए गए समीकरण को संतुष्ट करता है, समीकरण का हल या मूल कहलाता है।
- 6. समीकरण की किसी राशि को एक पक्ष से दूसरे पक्ष में ले जाना पक्षान्तरण या पक्ष बदलना कहलाता है।

अध्याय पाँच

कोष्ठक क्यों ?

राधा 80 रु. लेकर बाजार गई। उसने 15 रु. का पेन एवं 23 रु. का कम्पास बॉक्स खरीदा। उसने कुल 15 + 23 = 38 रु. खर्च किये। अब राधा के पास 80-38 = 42रु. शेष बचे। यदि आपकों यह हिसाब लिखना है, तो कैसे लिखेंगे? अपनी.अपनी कॉपियों में लिखिए।


आकांक्षा ने हिसाब कुछ इस प्रकार लिखा.

$$80 - 15 - 23 = 42 \, \overline{\bullet}$$
.

उत्तर ठीक प्राप्त हुआ किन्तु जूली ने पूछा कि तुमने तो 80 रु. में से 15 रु. और 23 रु. दोनों को घटा दिया। हमें 15 रु. और 23 रूपये के योगफल को 80 रु. में से घटाना था। इसे कैसे लिखेंगे? क्या आपके पास जूली के सवाल का जवाब है?

आइए, एक और समस्या पर विचार करें.

मान लीजिए किसी आयत की लम्बाई 5 इकाई एवं चौड़ाई 3 इकाई है, तो आयत का क्षेत्रफल = $5 \times 3 = 15$ वर्ग इकाई होगा। अब यदि उसकी लम्बाई 2 इकाई ओर बढ़ा दी जाए और चौड़ाई में कोई परिर्वतन नहीं किया जाए तो अब क्षेत्रफल किस प्रकार ज्ञात करेंगे।

सभी छात्रों ने लम्बाई 5+2 और चौड़ाई 3 लेकर हल किया तथा इस प्रश्न का हल निम्नांकित दो तरीके से प्राप्त हुआ -प्रथम तरीका

$$5 + 2 \times 3 = 7 \times 3 = 21$$
 वर्ग इकाई द्वितीय तरीका

 $5 + 2 \times 3 = 5 + 6 = 11$ वर्ग इकाई

एक प्रश्न के दो उत्तर प्राप्त होने का कारण सोचिए और अपनी अपनी कॉपी में लिखिए।

पहले तरीके में, 5 में 2 को जोड़ा गया है तथा प्राप्त योगफल को 3 से गुणा किया गया है। दूसरे तरीके में, 2 में 3 का गुणा किया गया है तथा प्राप्त गुणनफल में 5 जोड़ा गया है। यहाँ दो अंकों के समूह का चुनाव अलग.अलग करने पर हल भी अलग.अलग प्राप्त होता है। अतः जब प्रश्न में एक साथ एक से अधिक संक्रिया (योग, घटाना, भाग एवं गुणा) दी गई हो, तो उसे हल करने के लिए हमें कोष्ठकों की आवश्यकता होती है।

चूँकि यहाँ लम्बाई में वृद्धि हुई है तथा चौड़ाई अपरिवर्तित है।

अतः क्षेत्रफल = $(5+2) \times 3 = 7 \times 3 = 21$ वर्ग इकाई

जूली को अपने सवाल का उत्तर मिल गया। वास्तव में कोष्ठक दो या दो से अधिक संक्रियाओं (Operations) को समूह में दर्शाने का एक तरीका है। आइए, कुछ उदाहरण देखें-

$$80 - (23 + 15) = 80 - 38 = 42$$

 $(80-23) + 15 = 57 + 15 = 72$
 $(5 + 2) \times 3 = 7 \times 3 = 21$
 $5 + (2 \times 3) = 5 + 6 = 11$

उदाहरण 1. निम्न कथन में कोष्ठक का प्रयोग कर लिखिए। ''पाँच और तीन के योग को सात से गुणा कीजिए।''

हल यहाँ पहले पाँच और तीन का योग करना है उसमें 7 का गुणा करना है।

उदाहरण 2. 28 और 15 के अंतर को 12 और 4 के योग से भाग दीजिए।

हल यहाँ 28 और 15 का पहले अंतर निकाल कर आगे 12 और 4 के योगफल से भाग देना है।

अतः
$$(28-15)\div(12+4)$$
 उदाहरण 3. $\frac{7}{9}$ और $\frac{3}{5}$ के योग के दुगने में $\frac{4}{11}$ जोड़िये। हल

या $2 \times \left(\frac{7}{9} + \frac{3}{5}\right) + \frac{4}{11}$ (क्रम विनिमय नियम से)

प्रश्नावली 5.1

- 1. निम्न कथनों को कोष्ठक का प्रयोग करके लिखिए।
 - (i) दस और दो के अंतर को तीस से भाग दिया जावे।
 - (ii) बारह और पाँच के अंतर का 27 से गुणा किया जावे।
 - (iii) 4.5 एवं 2.3 के योग में 3.8 का भाग दिया जावे।
 - (iv) $\frac{8}{27}$ में $\frac{2}{3}$ एवं $\frac{7}{15}$ के योगफल का भाग दिया जावे।

- 2. निम्न कथनों को कोष्ठक का प्रयोग कर के लिखिए।
 - (i) 15 और 27 के योग में 8 तथा 6 के अन्तर का गुणा किया जावे।
 - (ii) 37 एवं 28 के गुणा में, 11 में 29 के भाग का योग किया जावे।
 - (iii) 8.45 तथा 6.75 के अंतर में 3.2 एवं 2.4 के योग का गुणा किया जावे।
 - (iv) पांच और ग्यारह के योगफल के दुगुने में से आठ और तीन के अंतर को घटाया जावे।

- (v) $\overline{27}$ एवं 9 के योग में 8 का भाग दिया जावे।
- (vi) 5 एवं 10 का योग, 7 एवं 3 का अंतर तथा 8 एवं 25 के गुणा का आपस में योग किया जावे।

आइए, कुछ उदाहरण और देखें।

उदाहरण 4. 2(5 + 3) का मान ज्ञात कीजिए।

हल
$$2(5+3) = 2(8)$$

= 2×8
= 16

पूर्व में इस तरह के प्रश्नों को हम हल कर चुके हैं। यहाँ 2 का 8 से गुणा किया गया है। अतः यदि कोष्ठक एवं कोष्ठक के बाहर की संख्या के बीच कोई चिन्ह न हो तो कोष्ठक के बाहर की संख्या के संख्या का कोष्ठक के अंदर की संख्याओं से गुणा करते हैं।

उदाहरण 5.
$$a-(b-c)$$
 का मान ज्ञात कीजिए $a-(b-c)=a-b+c$

उदाहरण 6. p - (q + r - s) का मान बताइये।

हल
$$p - (q + r - s) = p - q - r + s$$

यदि कोष्ठक के पहले घटाने की संक्रिया (-) हो, तो कोष्ठक के अंदर की धनात्मक संख्या को ऋणात्मक संख्या में तथा ऋणात्मक संख्या को धनात्मक संख्या में बदल कर लिखते है। यदि कोष्ठक से पहले धन संक्रिया हो तो हल करते समय कोष्ठक के अंदर वाली संख्याओं में क्या परिवर्तन होगा ? सोचिए।

निम्नांकित प्रश्नों में कोष्ठक हटाकर बॉक्स में उचित चिन्हों को भरिये जिससे कथन सही हो जाये.

(i)
$$13 - (7 - 5) = 13 - 7 - 5$$

(ii)
$$8 + (10 - 6) = 8$$
 ---- 6

(iii)
$$20 - (8 - 5 - 1) = 20$$
 ---- 8 ---- 5 ---- 1

(iv)
$$(ax - by) - (cz+d) = ax$$
 ---- by ---- cz ---- d -----

(v)
$$0.75 + (0.25 - 0.30 + 0.05) = 0.75$$
----- 0.25 ---- 0.30 ---- 0.05

उदाहरण 7. सरल कीजिए
$$a+2(2a-3b)$$

हल $a+2(2a-3b)=a+4a-6b$ (कोष्ठक हल करने पर) $=5a-6b$

उदाहरण 8. सरल कीजिए 3x-4y-(2x-3y)

हल
$$3x-4y-(2x-3y) = 3x-4y-2x+3y$$
$$= 3x-2x-4y+3y$$
$$= x-y$$

प्रश्नावली 5.2

निम्नलिखित को सरल कीजिए

- 1. 2a + 4(a+5b)
- 2. (3a-4b) 2b
- 3. (4x+3) (2x+3)
- 4. 2(5x+3-4x+2)
- 5. 30 15(4x 2y)
- 6. 4.5 + 2.5 (3.5 + 8.5)
- 7. 12.8 3.2 (4 2.8)
- 8. 8a + 3(5a+6b-3)
- 9. $\frac{3}{4} + \frac{11}{19} \left(\frac{6}{11} + \frac{7}{22} \right)$

कभी कभी हमें ऐसे भी प्रश्न हल करने को मिलते है जिनमें एक साथ विभिन्न संक्रियाओं (योग, घटाना, गुणा एवं भाग) को हल करना होता है। आइए, निम्नांकित उदाहरण को देखें।

उदाहरण 9. 15 – 4 x 3 + 16 ÷ 8 का मान ज्ञात कीजिए।

हल
$$15-4\times3+16\div8=15-4\times3+2$$
 (भाग संक्रिया) $=15-12+2$ (गुणन संक्रिया) $=3+2$ (घटाना संक्रिया) $=5$ (योग संक्रिया)

अनु ने सुरेश से कहा ''मेरी उम्र मेरे पिता की उम्र की $\frac{1}{3}$ है। जिसका अर्थ यह है कि मेरे पिता की उम्र 39 वर्ष है और मेरी उम्र 39 का $\frac{1}{3}$ अर्थात 13वर्ष है। अर्थात ''का'' का उपयोग हम गुणा के लिए करते हैं। क्या तुम ''का'' को लेकर कोई उदाहरण दे सकते हो।''

सुरेश ने कहा ''क्यों नहीं हमारी कक्षा में लड़कों की संख्या लड़कियों की संख्या का दुगना है। यदि लड़कियों की संख्या 24 है तो लड़कों की संख्या 24 का दुगना अर्थात 24 x 2 =48 है।'' अनु और सुरेश द्वारा दिये गये उदाहरणों के जैसे कुछ और उदाहरणों पर विचार करें

उदाहरण 10. आकांक्षा के पुस्तक में 120 पृष्ठ है, प्रतिदिन वह अपनी पुस्तक का ⁵ पढ़ती है। एक दिन में वह कितने पेज पढ़ती है।

हल यहां 120 पेज का $\frac{1}{5}$ भाग ज्ञात करना है। 120 पेज का $\frac{1}{5}$ = $_{120} \times \frac{1}{5}$ = 24 पृष्ठ

अतः वह प्रतिदिन 24 पृष्ठ पढ़ती है। इस प्रकार ''का'' का वास्तविक अर्थ गुणा (X) से है।

उदाहरण 11. एक कमरे की लम्बाई 10मी. है, यदि चौड़ाई लम्बाई का $\frac{2}{5}$ भाग हो, तो चौड़ाई ज्ञात कीजिए।

हल कमरे की चौड़ाई = कमरे की लम्बाई की $\frac{3}{5}$ = 10 का $\frac{3}{5}$ = $10 \times \frac{3}{5}$ = 6 मी.

उदाहरण 12. किसी शाला में लड़के की संख्या 200 एवं लड़कियों की संख्या 150 है, यदि शिक्षकों की संख्या छात्रों की संख्या का 25वां भाग है, तो शाला में कितने शिक्षक है।

हल शिक्षकों की संख्या = (लड़कों की संख्या + लड़कियों की संख्या) का $\frac{1}{25}$ = (200 + 150) का $\frac{1}{25}$ = 350 का $\frac{1}{25}$ = 350 'x $\frac{1}{25}$

अतः शिक्षकों की संख्या = 14

उदाहरण 13. 5+6 का $3 \div 9 + 8 - 2 \times 3$

हलः $5+18 \div 9+8-2\times 3$ ("का" का अर्थ \times से है? 6 का $3=6\times 3=18$)

$$= 5 + 2 + 8 - 2 \times 3$$
 (भाग संक्रिया)
 $= 5 + 2 + 8 - 6$ (गुणन संक्रिया)
 $= 15 - 6$ (योग संक्रिया)
 $= 9$ (घटाना संक्रिया)

उपरोक्त उदाहरणों से स्पष्ट है कि विभिन्न संक्रियाओं को हल करते समय.

- (1) सबसे पहले ''का'' को हल करते हैं।
- (2) फिर भाग संक्रिया को हल करते हैं।
- (3) फिर गुणा संक्रिया को हल करते हैं।
- (4) अंत में योग एवं घटाना संक्रिया को पूर्ण करते हैं।

जब व्यंजक में कोष्ठक एवं गणितीय संक्रियाएँ साथ.साथ दी गई हों, तो प्रश्न को हल करने के लिए क्रम संक्षिप्त में "BODMAS" या ''कोकाभागुयोघ'' द्वारा याद रख सकते हैं।

कोष्ठक के प्रकार

अभी तक हमने एक ही प्रकार के कोष्ठक () का उपयोग किया है पर कभी-कभी एक से अधिक प्रकार के कोष्ठकों के उपयोग करने की आवश्यकता होती है। सामान्यतया प्रयोग में आने वाले कोष्ठक एवं उनके संकेत निम्न है.

	कोष्ठक के प्रकार	संकेत
1.	रेखा कोष्ठक या सरल कोष्ठक "Bar"	""
2.	छोटा कोष्ठक या साधारण कोष्ठक (Parentheses)	"()"
3.	मंझला कोष्टक या सर्पाकार कोष्टक या धनु कोष्टक	"{ }"
	{Curly Brackets or Braces}	
4.	बड़ा कोष्टक या वर्ग कोष्टक [Bracket]	"[]"

गणित की मान्यताओं के आधार पर यदि प्रश्नों में एक साथ एक से अधिक कोष्ठकों का प्रयोग हो तो कोष्ठकों को निम्नांकित क्रम में हल करते हैं.

सर्वप्रथम् रेखा कोष्ठक " ____ "

उसके बाद छोटा कोष्ठक "()"
 उसके बाद मंझला कोष्ठक "{ }"
 उसके बाद बड़ा कोष्ठक "[]"

उदाहरण 14. हल कीजिए.
$$7 - \left\{13 - 2(4 + 4 - 2)\right\}$$
हल $7 - \left\{13 - 2(4 + 4 - 2)\right\}$
 $= 7 - \left\{13 - 2(4 + 4 - 2)\right\}$
 $= 7 - \left\{13 - 2 \times 6\right\}$ (छोटा कोष्ठक करने पर)
 $= 7 - \left\{13 - 12\right\}$
 $= 7 - \left\{13 - 12\right\}$
 $= 7 - 1 = 6$

उदाहरण 15. हल कीजिए. $5x - \left[2x - 4 + \left\{7x - 3(3 + 2x)\right\}\right]$
 $= 5x - \left[2x - 4 + \left\{7x - 3(3 + 2x)\right\}\right]$
 $= 5x - \left[2x - 4 + \left\{7x - 6x - 9\right\}\right]$
 $= 5x - \left[2x - 4 + \left\{7x - 6x - 9\right\}\right]$
 $= 5x - \left[2x - 4 + \left\{7x - 9 - 6x\right\}\right]$ (छोटा कोष्ठक हल करने पर)
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 9 - 6x\right)\right]$ (सर्पाकार कोष्ठक हल करने पर)
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)\right]$
 $= 5x - \left[2x - 4 + \left(7x - 6x - 9\right)$

$$=$$
 3.4 + 2.5 $=$ 5.9

5दाहरण 18. सरल कीजिए:
$$5a + \{3b - (2a - 4b)\}$$

हल: $5a + \{3b - (2a - 4b)\}$
 $5x^2 - \{3x + 3x^2 - 2x\}$
 $= 5x^2 - \{3x - 2x + 3x^2\}$
 $= 5x^2 - \{x + 3x^2\}$ (सजातीय पदों को एक साथ रखने पर)
 $= 5x^2 - x - 3x^2$
 $= 5x^2 - 3x^2 - x$
 $= 2x^2 - x$

उदाहरण 19. सरल कीजिए:
$$5x^2 - \{3x + (3x^2 - 2x)\}$$

 $5x^2 - \{3x + (3x^2 - 2x)\}$
 $= 5x^2 - \{3x + 3x^2 - 2x\}$
 $= 5x^2 - \{3x - 2x + 3x^2\}$
 $= 5x^2 - \{x + 3x^2\}$
 $= 5x^2 - x - 3x^2$
 $= 5x^2 - 3x^2 - x$
 $= 2x^2 - x$

कभी-कभी गुणा के प्रश्नों को हल करने के लिए कोष्ठक का प्रयोग सुविधाजनक होता है।

उदाहरण 20. सरल कीजिए:
$$88 \times 95$$
 हल: 88×95 = $88 \times (100-5)$ = $88 \times 100 - 88 \times 5$ = $8800 - 440$ = $8800 - 440$

प्रश्न हल करने में वितरण नियम का उपयोग किया गया है। **उदाहरण 21.** मान ज्ञात कीजिए: 23.5×9.9 **हल:** 23.5×9.9

$$= 23.5(10-0.1)$$

$$= 23.5 \times 10 - 23.5 \times 0.1$$

$$= 235 - 2.35$$

$$= 232.65$$

प्रश्नावली 5.3

प्र.1 नम्नलिखित का मान ज्ञात कीजिए.

(I)
$$(4+6)$$
 का (II) (-13) $\frac{1}{5} + 6 \div (7-4)$

(v)
$$16 \div (6-5)$$
 (vi) $(-20) \times (-2) + (-14) \div 7$

(vii)
$$15 + (-3)$$
 का $(-4) - 6$

प्र.2 सरल कीजिए.

(i)
$$3x - [4x + \{x + (5x - 3x)\}]$$

(ii)
$$2-\left[2-\left\{2-\left(2-\overline{2-2}\right)\right\}\right]$$

(iii)
$$36 \div (8 - \overline{4 + 2})$$

(iv)
$$(19-6)[19+\{15+8-3\}]$$

(v)
$$3a^2 + \{5a^2 - (2a + 2a^2)\}$$

(vi)
$$5\frac{3}{4} \div 4\frac{3}{5} + 2\frac{1}{2}$$

(vii)
$$4a + [2a - {3b + (3a - 2b)}]$$

प्र.3 नीचे दिए गए कथनों में से सत्य कथन को छांटिए

(i)
$$18-3 \times 5 = 75$$

(ii)
$$5 \times 4 + 2 = 22$$

(iii)
$$4 - 2 - 2 = 0$$

(iv)
$$18 \div \div 3 = 1$$

प्र.4 वितरण नियम का प्रयोग करके सरल कीजिए -

- 1. 347×101
- 2. 429 × 98
- 3. 5.8×1.5
- 4. 48×0.9

प्र.5. अंकित के पास 50 रुपये हैं। जरूरत पड़ने पर विनीता को अपने रुपये $\overline{10}$ का भाग देती है, तो वह विनीता को कितने रुपये दिये।

प्र.6. मयंक 20 रुपये और पंकज 30 रुपये लेकर मेला देखने गये, वे एक साथ मिलकर दोनों

2

की कुल राशि $\frac{1}{5}$ भाग मेले में खर्च किये तथा लौटते समय 10 रुपये प्रदर्शनी में खर्च किये तो उनका कुल खर्च कितना हुआ।

प्र.7 पूजा को उसके पिता से 60 रु., मां से 40 रु. और भाई से 20 रु. मिले। वह बाजार से 15 रु. का पेन खरीद कर लाई। शेष राशि को उसने 5 सहेलियों में बराबर बांट दिया तो बताइए कि प्रत्येक सहेली को कितने रुपये मिले। कोष्ठक का प्रयोग करके हल कीजिए।

हमने सीखा

- 1. कोष्ठक का उपयोग दो या दो से अधिक संक्रियाओं को समूह में दर्शाने के लिए किया जाता है।
- 2. यदि एक साथ 'का' के साथ चारों संक्रियाएं दी गई हो तो सबसे पहले ''का'' उसके बाद भाग तत्पश्चात गुणा एवं सबसे अंत में योग या घटाने की क्रिया करते हैं।
- 3. सामान्यतया 4 प्रकार के कोष्ठक प्रयोग में आते हैं जिसका सरलीकरण "-", (), { $}$ एवं [], के क्रम में किया जाता है।
- 4. जिन कोष्ठकों में गणितीय संक्रियाएं साथ.साथ होती हैं उन्हें सरल करने के लिए BODMAS (कोकाभाग्योघ) का क्रम याद रखते हैं।
- 5. संक्रिया ''का'' का अर्थ गुणा होता है।

अध्याय छः

घातांक (Exponents)

भूमिका

एक पुरानी कहावत है कि ''खबरें जंगल में आग की तरह फैलती हैं'' क्या वास्तव में खबरें भी उतनी ही जल्दी फैलती हैं जितनी जल्दी जंगल की आग ?

आइए, हिसाब लगाकर देखें कि खबरें इतनी जल्दी कैसे फैलती हैं:-

एक व्यक्ति राजधानी से कोई खबर लेकर अपने शहर पहुंचता है तथा वह 3 व्यक्तियों को यह खबर सुनाता है। मानािक इस कार्य के लिए उसे 5 मिनट का समय लगता है। यही खबर प्रत्येक व्यक्ति द्वारा 3-3 व्यक्तियों को अगले 5 मिनट में दी जाती है। इस प्रकार पहले 5 मिनट में जो खबर 3 व्यक्तियों को मालूम थी, दूसरे 5 मिनट में वह खबर और 3×3 अर्थात 9 व्यक्तियों तक पहुंच गई। अगले 5 मिनट में यह खबर 9×3 व्यक्तियों तक अर्थात 27 तक पहुंचेगी तथा पुनः अगले 5 मिनट में यही खबर 27×3 अर्थात 81 और नये व्यक्तियों तक पहुंच जायेगी। इसी प्रकार 60 मिनट में यह खबर एक व्यक्ति से शुरू करके कितने व्यक्तियों तक पहुंच पहुंचेगी? आइए करके देखें:-

```
5 मिनट में खबर पहुँचती है : 3 नये व्यक्तियों तक
```

```
10 मिनट में खबर पहँचती है: 3 x 3 = 9 नये व्यक्तियों तक
```

15 मिनट में खबर पहुँचती है: $3 \times 3 \times 3 = 27$ नये व्यक्तियों तक

20 मिनट में खबर पहँचती है: $3 \times 3 \times 3 \times 3 = 81$ नये व्यक्तियों तक

25 मिनट में खबर पहुँचती है : $3 \times 3 \times 3 \times 3 \times 3 = 243$ नये व्यक्तियों तक

30 मिनट में खबर पहँचती है : $3 \times 3 \times 3 \times 3 \times 3 = 729$ नये व्यक्तियों

35 मिनट में खबर पहुँचती है: 3 x 3 x 7 बार = 2187 नये व्यक्तियों

40 मिनट में खबर पहुँचती है: 3 × 3 × 8 बार = 6561 नये व्यक्तियों तक

45 मिनट में खबर पहुँचती है: 3 × 3 × 9 बार = 19683 नये व्यक्तियों तक

50 मिनट में खबर पहुँचती है : $3 \times 3 \times \dots$ 10 बार = 59049 नये व्यक्तियों तक

55 मिनट में खबर पहुँचती है: $3 \times 3 \times$ 11 बार = 177147 नये व्यक्तियों तक

60 मिनट में खबर पहुँचती है: $3 \times 3 \times$ 12 बार = 531441नये व्यक्तियों तक

इस प्रकार 60 मिनट में इसके जानने वालों की कुल संख्या =

1+3+9+27+81+243+729+2187+6561+19683+59049+177147+531441= 797161

हमने यहां यह माना है कि सभी लोग लगातार खबर बांटने का काम कर रहे हैं और हर नए व्यक्ति को एक ही खबर सुना रहे हैं। प्रत्येक व्यक्ति मात्र एक बार ही तीन नए व्यक्ति को खबर सुना रहा है।

आप देख रहे हैं कि मात्र 60 मिनट में एक व्यक्ति से शुरू होकर कोई खबर किस तरह से सात लाख से अधिक लोगों के बीच फैल सकती है।

शतरंज के खेल का आविष्कार भारत में हुआ था। इससे जुड़ी एक मज़ेदार कहानी इस प्रकार है - जब यहां के राजा को पता चला कि बुद्धिमता पूर्ण इस खेल का आविष्कारक उन्हीं के राज्य का एक विद्वान है, तो आविष्कारक को बुलाकर राजा ने कहा, "मैं तुम्हारे इस अनूठे आविष्कार के लिए तुम्हें पुरस्कार देना चाहता हूँ।" यह सुनकर विद्वान ने अपना सिर झुका लिया।

राजा ने कहा - मेरे पास पर्याप्त धन है। मैं तुम्हारी कोई भी इच्छा पूरी कर सकता हूँ। माँगो जो तुम्हारी इच्छा हो, डरो मत।

विद्वान ने कहा - राजन्! आपकी उदारता महान है। आप मुझे शतरंज के पहले घर (खाना) के लिए गेहूँ का एक दाना दिलाने की आज्ञा दें। दूसरे घर के लिए 2 दाने दिलाने की, तीसरे घर के लिए 4, चौथे घर के लिए 8, पांचवे घर के लिए 16, छठवें घर के लिए 32,

बस करो, राजा ने क्रोधित होकर उसे बीच में रोक दिया।

तुम्हें शतरंज के पूरे 64 घरों के लिए दाने मिल जायेंगे। हर घर में दानों की संख्या पिछले घर से दुगुनी होनी चाहिए, यही तुम्हारी शर्त है ना, परन्तु यह जान लो कि इतना छोटा ईनाम मांगकर तुम मेरी उदारता का अपमान कर रहे हो।

क्या आप बता सकते हैं कि चौसठवें खाने में राजा को गेहूँ के कितने दाने देने पड़ेंगे? गणना बहुत बड़ी होती जा रही है लेकिन मजेदार बात यह है कि यहां 2 का 2 के साथ बार-बार गुणा करना पड़ रहा है। जैसे:-

पहले घर में दाना : 1 दूसरे घर में दाने : 2

तीसरे घर में दाने : 2 x 2

चौथे घर में दाने : 2 x 2 x 2

पांचवे घर में दाने : $2 \times 2 \times 2 \times 2$

छठवें घर में दाने : 2 x 2 x 5 बार

इसी प्रकार,

चौसठवें घर में दाने : 2 x 2 x 63 बार

निश्चित ही यह संख्या बहुत बड़ी होगी, पर क्या आप कहानी का अंत जानना नहीं चाहेंगे? क्या राजा आविष्कारक को यह ईनाम दे सकेगा? आविष्कारक को 18446744073709551615 दाने गेहू के देने पड़ेंगे और पूरी पृथ्वी की ज़मीन पर अगर गेहूँ की खेती की जाए तब भी इतना गेहूं नहीं मिलेगा। अब आप ही सोचिए यह है ना एक बहुत बड़ी संख्या?

2 x 2 x 63 बार करने पर कितनी बड़ी संख्या प्राप्त होगी? तो क्या किसी संख्या में उसी संख्या से बार-बार गुणा करने की प्रक्रिया को लिखने का कोई और तरीका हो सकता है?

प्राकृत संख्याओं के घात

कक्षा के सभी विद्यार्थी यही सोच रहे थे कि किसी राशि का उसी राशि के साथ गुणा करने की प्रक्रिया का प्रयोग गणित में और कहाँ किया गया है? तभी अनु ने आशु से कहा - ''हम क्षेत्रफल निकालने में इकाई सेमी × सेमी को सेमी2 लिखते हैं। इसी प्रकार आयतन निकालते समय भी इकाई सेमी × सेमी को सेमी3 लिखते हैं। क्या इसी प्रकार 2×2×2 को 23 नहीं लिखा जा सकता?

अनु ने किसी राशि को उसी राशि से बार-बार गुणा करने को संक्षेप में लिखने का ठीक तरीका सुझाया। क्या आप $5 \times 5 \times 5 \times 5 \times 5 \times 5$ को संक्षेप में लिख सकते है?

जिस प्रकार $5 \times 5 \times 5 \times 5 \times 5 \times 5 = 56$ है 5सी प्रकार $a \times a \times a \times a \times a \times a = a^6$ तथा $x \times x \times x \times x = x^4$ होता है। आप भी किसी राशि का उसी राशि के साथ बार-बार गुणा को संक्षेप में लिखिए:-

(i)	$x \times x \times x$	=	
(ii)	$r \times r \times r \times r \times r$	=	
(iii)	$17\times17\times17\times17\times17\times17\times17\times17\times17$	=	
(iv)	$101\times101\times101\times101\times101$	=	

किसी संख्या का उसी संख्या के साथ बार-बार गुणा करने को आप संक्षेप में लिखना सीख चुके हैं। इस संक्षिप्त रूप को हम **घातीय संकेतन** भी कहते हैं। आइए, देखें कि इन्हें किस तरह से पढ़ा जाता है:-

 $3 \times 3 \times 3 \times 3 = 34$ यहाँ 3 आधार है तथा 4 घात है। $p \times p \times p \times p \times p \times p \times p = p^6$ यहाँ च आधार है तथा 6 घात है। $r \times r \times \dots = 17$ बार $= r^{17}$ यहाँ त आधार है तथा 17 घात है।

क्रियाकलाप 1.

नीचे लिखे व्यंजकों के आधार एवं घात को उनके सामने दिए गए स्थानों में लिखिए:-

 x^a में आधार = और घात =

 p^{q} में आधार = और घात =

 x^{y} में आधार = और घात =

अब आप समझ चुके होंगे कि घातीय रूप में लिखने का वास्तविक उद्देश्य किसी बहुत बड़ी राशि को संक्षिप्त रूप में लिखना है।

जैसे सूर्य से पृथ्वी की दूरी 150000000 किलोमीटर है जो एक बहुत बड़ी राशि है इसे निम्न प्रकार से लिख सकते हैं।

150000000 किमी = $15 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 = 15 \times 107$ किमी विस्तृत रूप को संक्षिप्त रूप में लिखना तो आप सीख चुके हैं। अब कुछ घातीय रूप को विस्तृत रूप में लिखिए:-

1.
$$a^5 = a \times a \times a \times a \times a$$

3.
$$5^5 = \dots$$

4.
$$r^7 = \dots$$

5.
$$2^{m} = \dots$$

रहीम को यह समझ में नहीं आ रहा था कि वह 2^m को विस्तृत रूप में कैसे लिखे क्योंकि उ का कोई निश्चित मान नहीं है। क्या आप के पास रहीम की समस्या का जवाब है?

पहले भी आपने देखा है कि शतरंज के 64 वें खाने में राजा को $2 \times 2 \times 2 \times$ 63 बार अर्थात् 2^{63} दाने गेहूँ के देने थे।

उसी प्रकार

 $2^{m} = 2 \times 2 \times 2 \times \dots$ m बार लिख सकते हैं।

इसी प्रकार हम $x^{\mathbf{m}}$ और $\mathbf{y}^{\mathbf{n}}$ को निम्न प्रकार से लिख सकते हैं -

$$x^{\mathbf{m}} = x \times x \times x \times \dots$$
 m बार और

$$y^n = y \times y \times ----$$
 n बार लिख सकते हैं।

घातांक के नियम

आप जानते हैं कि $2^5 = 2 \times 2 \times 2 \times 2 \times 2$ होता है। इसमें 2 के गुणकों का अलग-अलग समूह बनाकर कई प्रकार से लिख सकते हैं। जैसे:-

$$2^5 = 2 \times (2 \times 2 \times 2 \times 2) = 2^1 \times 2^4$$

$$2^5 = (2 \times 2) (2 \times 2 \times 2) = 2^2 \times 2^3$$

$$2^5 = (2 \times 2 \times 2) \times (2 \times 2) = 2^3 \times 2^2$$

$$2^5 = (2 \times 2 \times 2 \times 2) \times 2 = 2^4 \times 2^1$$

यहाँ 2^5 को 2 के आधार वाले व्यंजकों में कई प्रकार से लिखा गया है। आप भी नीचे दिए गए घातीय व्यंजकों को समान आधार वाले दो व्यंजकों के गुणंाक के रूप में लिखिए और घातों का योगफल प्राप्त कीजिए:-

क्रमांक		विस्तृत रूप में लिखकर दो समूहों में बांटना (समूह अपनी इच्छा से बनाइए)	प्रत्येक समूह को घातीय व्यंजक के रूप में लिखिए	का
1. 2. 3. 4.	a ⁷ x ⁵ y ¹⁰ 27 ⁷	axaxaxa x axaxa	$a^4 \times a^3$	4 + 3 = 7

ऊपर घातीय व्यंजकों के विस्तार रूप को देखिए तथा नीचे दिए हुए बॉक्स को भरिए:-

$$a^7 = a^5 \times a^2$$
 $x^5 = x^3 \times ---- y^{10} = y^7 \times ---- 7^{12} = 7^8 \times -----$

क्या दो समान आधार वाली राशियों का गुणा करने पर उन राशियों के घातों का गुणनफल वाली राशि के घात से कोई सम्बन्ध है? लिखिए।

आइए देखें कि सामान आधार वाली घातीय व्यंजकों का गुणा कैसे होता है:-

क्या आप बता सकते हैं कि ऊपर y का y के साथ कितनी बार गुणा होगा ? गुणनफल में ल आधार लें, तो उसका घात क्या होगा ?

y का y के साथ (19 + 21) = 40 बार गुणा हो रहा है।

अतः गुणनफल y^{40} होगा।

अतः हम कह सकते है कि "जब दो समान आधार वाली घातीय राशियों का गुणा होता है, तो गुणनफल में आधार वही रहता है तथा उनकी घातें आपस में जुड़ जाती हैं।" जैसे:-

$$^{99} \times ^{3} ^{13} = ^{3(99+13)} = ^{3112}$$
 क्या आप $x^{m} \times x^{n}$ का गुणनफल बता सकते हैं? $^{m} \times x^{n} = x \times x$ -------m बार और n बार अर्थात् $(m+n)$ बार गुणा हो रहा है।

अतः **नियम 1** $x^{\mathbf{m}} \times x^{\mathbf{n}} = x^{\mathbf{m}+\mathbf{n}}$

आप भी दो समान आधार वाली घातीय राशियाँ सोचिए और उनका गुणा ऊपर दिये गये नियम 1 की सहायता से कीजिए:-

1.
$$3^5 \times 3^9 = 3^{14}$$
 (उदाहरण)

2.
$$3^{10}$$
 × 3^{4} = 3^{14} (उदाहरण)
3. × =
4. × =

किसी संख्या का उसी संख्या से बार-बार गुणा करने को घातीय रूप में लिखना आप सीख चुके हैं तथा आपने समान आधार वाली घातीय राशियों का गुणा करना भी समझ लिया है। अपने समझ के आधार पर क्या आप 82 को 2 की आधार वाली घातीय राशियों में बदल सकते हैं?

राजू ने प्रश्न को इस तरह से हल किया:-

$$8^2 = 8 \times 8 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 2^6$$

राधा ने प्रश्न को दूसरे तरीके से हल किया। उसने 8 = 23 लिखकर 23 का 23 के साथ दो बार गुणा किया:-

$$8^2 = 8 \times 8 = 2^3 \times 2^3 = 2^{(3+3)} = 2^6$$

इन हलों को देखकर रहीम ने कहा - दोनों तरीकों से तो एक ही उत्तर आ रहा है, किन्तु यदि 812 जैसी कोई बड़ी घात वाली राशि हो तो क्या करेंगे ?

राधा अपने तरीके से हल करने लगी:-

$$8^{12} = 8 \times 8 \times 8 \times \cdots 12$$
 बार
$$= 2^3 \times 2^3 \times 2^3 \times \cdots 12$$
 बार
$$= 2^{(3+3+3+\cdots 1)}$$

$$= 2^{(3\times 12)}$$

$$= 2^{36}$$

राधा ने तो हल कर लिया परन्तु राजू के तरीके से 2 इतने ज्यादा बार आ रहे थे कि उसने राधा के तरीके से हल करना उचित समझा।

राधा ने अपने साथियों को कुछ सवाल दिए और पूछा कि निम्नांकित घातीय राशियों को उनके सामने लिखे आधार वाली घातीय राशियों में लिखिए।

- 1. $(27)^6$ को 3 के आधार वाली घातीय राशि में
- 2. $(25)^5$ को 5 के आधार वाली घातीय राशि में
- 3. $(64)^6$ को 4 के आधार वाली घातीय राशि में

आइए, राधा द्वारा पूछे गए सवालों पर विचार करें:-

(64)⁶ को 4 के आधार वाली घातीय राशि में लिखने के लिए हमें 64 को 4 के घातीय रूप में बदलना होगा, अर्थात

$$(64)^{6} = (4 \times 4 \times 4)^{6}$$
$$= (4^{3})^{6}$$

$$= 43 \times 43 \times 43 \times 43 \times 43 \times 43$$

$$= 4(3+3+3+3+3+3)$$

$$= 418$$

ऊपर सवाल में $(64)^6$ में 64 को 43 के रूप में लिख सकते हैं तथा $(4^3)^6$ में 4^3 का 4^3 के साथ 6 बार गुणा होगा अर्थात् $4^{(3x6)} = 4^{18}$

स्पष्ट है कि 4 की घात 3 पूरे की घात 6 को हल करने पर घातंाकों का आपस में गुणा होता है।

और एक उदाहरण देखिए -
$$(25)^5 = (5^2)^5$$

= $5^2 \times 5^2 \times 5^2 \times 5^2 \times 5^2$
= $5^{(2+2+2+2+2)}$
= 5^{10}

क्रियाकलाप 2.

निम्न को सरल कीजिए:-

(i)
$$(2^3)^5 =$$
 (ii) $(14^2)^4 =$ (iii) $(10^2)^5 =$ (iv) $(x^2)^3 =$ (v) $(a^7)^9 =$ (vi) $(y^n)^6 =$ (vii) $(x^m)^n =$

$$(vii) (v^n)^6 = (viii) (x^m)^n =$$

प्रश्न (viii)को आपने कैसे हल किया। उसकी व्याख्या अपनी कॉपी में कीजिए।

$$(x^{\mathbf{m}})^{\mathbf{n}} = x^{\mathbf{m}} \times x^{\mathbf{m}} \times \cdots$$
 \mathbf{n} बार $= x^{(\mathbf{m}+\mathbf{m}+\cdots \mathbf{n})}$ हम जानते हैं कि:- $\mathbf{m} + \mathbf{m} = 2 \times \mathbf{m}$ $\mathbf{m} + \mathbf{m} + \mathbf{m} = 3 \times \mathbf{m}$ $\mathbf{m} + \mathbf{m} + \cdots \times \mathbf{8}$ बार $= 8 \times \mathbf{m}$ $\mathbf{m} + \mathbf{m} + \cdots \times \mathbf{12}$ बार $= 12 \times \mathbf{m}$ अतः $\mathbf{m} + \mathbf{m} + \cdots \times \mathbf{n}$ बार $= \mathbf{n} \times \mathbf{m}$ या $\mathbf{m} \times \mathbf{n}$

 $(x^{\mathbf{m}})^{\mathbf{n}} = x^{\mathbf{m} \times \mathbf{n}}$ अतः नियम 2

पष्ट है कि घात की घात वाली राशियों को सरल करने पर घातों का आपस में गुणा हो जाता है। निम्नांकित प्रश्नों को नियम-2 की सहायता से हल करके घातीय रूप में लिखिए:-

क्रियाकलाप 3.

(i)
$$(7^5)^9$$
 = $7^{5\times 9} = 7^{45}$ (ii) $(2^9)^{13} =$

(iii)
$$(a^b)^c = (iv) (x^2)^3 =$$

$$(v) (31^{12})^3 =$$

अब गुणनफल के रूप में लिखी जा सकने वाले निम्न संख्याओं पर विचार कीजिए:-

(i)
$$6^3 = (2 \times 3)^3$$

 $= (2 \times 3) \times (2 \times 3) \times (2 \times 3)$
 $= (2 \times 2 \times 2) \times (3 \times 3 \times 3)$
 $= 2^3 \times 3^3$
(ii) $35^4 = (5 \times 7)^4$
 $= (5 \times 7) \times (5 \times 7) \times (5 \times 7) \times (5 \times 7)$
 $= (5 \times 5 \times 5 \times 5) \times (7 \times 7 \times 7 \times 7)$
 $= 5^4 \times 7^4$
(iii) $77^5 = (7 \times 11)^5$
 $= (7 \times 11) \times (7 \times 11) \times (7 \times 11) \times (7 \times 11)$
 $= (7 \times 7 \times 7 \times 7 \times 7) \times (11 \times 11 \times 11 \times 11)$
 $= 7^5 \times 11^5$

इन प्रश्नों पर विचार करते हुए रहीम ने सोचा कि यदि 26^{m} हो तब उसे किस रूप में लिखेंगे।

$$26^{\text{m}}$$
 = $(2 \times 13)^m$ = $(2 \times 13) \times (2 \times 13) \times (2 \times 13)$ ----- m बार
 = $(2 \times 2 \times 2 - \dots - m$ बार $) \times (13 \times 13 \times 13 - \dots - m$ बार $)$
 = $2^m \times 13^m$

रज़िया ने रहीम से पूछा यदि (ab) हो तब इसे किस रूप में लिख सकेंगे? रहीम ने बताया, "ठीक ऊपर के प्रश्नों में जिस तरह से लिखा गया है, उसी तरह", अर्थात

$$(ab)^m = (ab) \times (ab) \times (ab) \times ------ m$$
 बार
$$= (a \times a \times a ----- m \text{ बार}) \times (b \times b \times b ----- m \text{ बार})$$
$$= a^m b^m$$

अतः **नियम 3** $(ab)^m = a^m b^m$

प्रश्नावली 6.1

- निम्नलिखित को घातीय संकेतन में लिखिए -1.
 - (a) $3 \times 3 \times 3 \times 3 \times 3 =$
- (b) $5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5 =$

 65^{6}

- $a \times a \times a \times a \times a \times a \times a =$
- (d) $b \times b \times b \times b =$
- निम्नलिखित को गुणनखण्डों में तोडकर घातीय रूप में लिखिए:-2.
- 42^5 (c) 51^3 (d) (b) (a) 3. निम्नलिखित को सिद्ध कीजिए:-
 - (a) $(a \times b \times c)^p = a^p \times b^p \times c^p$ (b) $30^5 = 2^5 \times 3^5 \times 5^5$ (c) $616^9 = 7^9 \times 8^9 \times 11^9$
- निम्नलिखित को नियम 3 का उपयोग कर घातांक रूप में लिखिए। 4.
 - $6^8 \times 7^8$ (a)

 15^{4}

 $a^3 \times b^3$ (b)

 21^{m} (e)

 $p^9 \times q^9 \times r^9$ (c)

- (d) $a^n \times b^n \times c^n \times d^n$
- निम्नलिखित में घात के नियमों को ध्यान रखते हुए सही अथवा गलत बताइए। 5.

(a)
$$2^3 \times 2^4 = 2^7$$

(b)
$$5^{15} \times 5^5 = 5^{20}$$

(c)
$$2^4 \times 3^2 = 2^6$$

(d)
$$(27)^2 = (3^3)^2$$

(e)
$$(2^3)^4 = (2^4)^3$$

प्राकृत संख्याओं में भाग व घात

फातिमा ने मोनू से पूछा, समान आधार वाली घातीय राशियों को गुणा करना तो हमने सीख लिया लेकिन समान आधार वाली घातीय राशियों का भाग कैसे करेंगे?

मोनू ने कहा, चलो करके देखते हैं -

$$\frac{2^{5}}{2^{3}} = \frac{2 \times 2 \times 2 \times 2 \times 2}{2 \times 2 \times 2}$$

$$2 \times 2 = 2^{2}$$

कमली और आशू ने भी इसी प्रकार के सवाल हल किए:-

(i)
$$\frac{5^8}{5^4}$$
 5 × 5 × 5 × 5 = 5⁴

(ii)
$$\frac{7^9}{7^6} = \frac{7 \times 7 \times 7 \times 7 \times 7 \times 7 \times 7 \times 7}{7 \times 7 \times 7 \times 7 \times 7 \times 7} = 7 \times 7 \times 7 = 7^3$$

फातिमा ने सभी हलों को देखकर साथियों से कहा कि जिस तरह दो समान आधार वाली घातीय राशियों का गुणा करने पर घातें जुड़ती हैं उसी प्रकार दो समान आधार वाली घातीय राशियों में भाग क्रिया करने पर अंश की घात में से हर की घात घटा देते है।

जैसे:- $2^5 \div 2^3$ के भागफल का घात 5-3=2 होता है, $5^8 \div 5^4$ के भागफल का घात 8-4=4 एवं $7^9 \div 7^6$ के भागफल का घात 9-6=3 है। अर्थात

 $a^m \div a^n$ के भागफल का घात m-n होगा।

अत **नियम 4: _a**™

$$a^n = a^{m-n}$$

तभी मोनू ने कहा ''यह तो ठीक है, परंतु यदि अंश और हर की घातीय संख्याएं समान हों तो क्या होगा? चलो हल करके देखें -

जैसे:
$$\frac{7^{5}}{7^{5}} - 7^{5-5} - 7^{0}$$
परन्तु
$$\frac{7^{3}}{7^{5}} = \frac{7 \times 7 \times 7 \times 7 \times 7}{7 \times 7 \times 7 \times 7 \times 7} = 1$$

$$7^{\circ} = 1$$

तो क्या किसी घातीय राशि का घात शून्य होने पर उसका मान 1 होता है।

जैसे
$$\frac{p^n}{p^n} = 1$$
 होगा परन्तु सूत्र से $\frac{p^n}{p^n} = p^n$ " $= p^n$

अतः **नियम 5 p**⁰ = **1**

अब जुरा निम्न संख्याओं पर विचार करें।

$$\frac{1}{5^2} = \frac{5^0}{5^2} = 5^{0-2} = 5^{-2}$$
 (50° = 1 से)
$$= \frac{1}{6^{35}} = \frac{6^0}{6^{35}} = 6^{0-35} = 6^{-35}$$
 (60° = 1 से)
$$\frac{1}{4^{90}} = \frac{4^0}{4^{90}} = 4^{0-90} = 4^{-90}$$
 (40° = 1 से)

इन प्रश्नों का अवलोकन करते हुए फातिमा ने विचार किया कि यदि घातीय संख्याओं में हर को अंश के स्थान पर ले जाएं तब उनके घात के धनात्मक पूर्णांक, ऋणात्मक में एवं ऋणात्मक पूर्णांक धनात्मक में बदल जाता है, अर्थात यदि हमारे पास

$$\frac{1}{a^{1}} \text{ हो तब } \frac{1}{a^{2}} = \frac{a^{0}}{a^{4}} = a^{0-4} = a^{-4}$$
 होगा
$$\frac{1}{a^{1}} \text{ हो तब } \frac{1}{a^{m}} = \frac{a^{0}}{a^{m}} = a^{0-m} = a^{-m}$$
 अतः **नियम 6**
$$\frac{1}{a^{m}} = a^{-m}$$
 या
$$\frac{1}{a^{m}} = a^{m}$$

परन्तु यदि अंश को हर में ले जाएं तो क्या होगा, जैसा हमने ऊपर उदाहरणों में देखा है कि

$$\frac{1}{7^{-3}} = 7^{\frac{1}{3}} \frac{1}{4!} = a^4 \frac{1}{4!} = a^{11} = \frac{1}{a^{-1}}$$

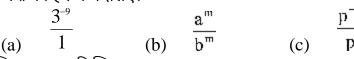
उदाहरण: 1 x का मान ज्ञात कीजिए।
$$2^x = \frac{1}{4}$$
 हल: $2^x = \frac{1}{4}$ $2^x = 2^{-2}$

प्रश्नावली 6.2

- निम्न को नियम-४ की सहायता से घातीय रूप में हल करें। (1)
 - (a)

 $\therefore x = -2$

- $6^5 \div 6^3$ (b) $27^8 \div 27^2$ (c) $13^m \div 13^n$
- (d) $(mn)^7 \div (mn)^2$ (e) $x^{11} \div x^4$ (2)
- निम्न को सिद्ध कीजिए (2)


- निम्नलिखित को धनात्मक घात के रूप में लिखिए। (3)
 - (a) 12^{-3}

(b) 19^{-5}

(c) 3^{-4} (d) 5^{-3} (4) निम्न के हर को अंश में बदलिए।

(a)
$$\frac{1}{35^4}$$
 (b) $\frac{1}{x^5}$

(5) निम्न के अंश को हर में बदलिए।

(6) निम्नलिखित का मान लिखिए:-

(a)
$$273^{\circ}$$
 (b) $\left(\frac{x^{5}}{x^{2}}\right)^{0}$ (c) $\left(\frac{27p^{21}}{p^{11}}\right)^{c}$

(7) ग का मान क्या होगा

(a)
$$2^{x} = 4$$
 (b) $4^{x} = 64$ (c) $8^{x} = 1$
(d) $3^{x} = \frac{1}{3}$ (e) $4^{x} = \frac{1}{64}$ (f) $3^{2x+4} = 3 \times 243$

(8) विश्व की जनसंख्या लगभग हैं तथा विश्व का सतही क्षेत्रफल लगभग 4×10^{11} वर्ग किलोमीटर हैं तो प्रति वर्ग किलोमीटर लगभग कितने व्यक्ति रहते होंगे?

हमने सीखा

- 1. किसी संख्या का उसी संख्या के साथ बार-बार गुणा करने को संक्षिप्त रुप में प्रदर्शित करना घातीय संकेतन कहलाता है।
- 2. जब दो समान आधार वाली घातीय राशियों का आपस में गुणा होता है, तो गुणनफल में आधार वही रहता है तथा घातें आपस में जुड़ जाती हैं।

$$\chi^m \times \chi^n = \chi^{m+n}$$

3. यदि अंश और हर में समान आधार वाली घातीय राािश हो तो हल करते समय आधार वहीं रहता है तथा अंश के घात में से हर की घात को घटा देते हैं।

$$\frac{x^m}{x^n} = x^{m-n}$$

- 4. यदि घातीय संख्या का भी घातांक दिया हो तो हल करते समय घातांकों का आपस में गुणा हो जाता है।
- 5. यदि किसी संख्या की $(x^m)^n = x^{m \times n}$ घात शून्य हो तो उसका $x^\circ = 1, 5^\circ = 1$ मान 1 होता है।
- 6. यदि लिखी गयी संख्या में कोई घात न हो तो उसका अर्थ उस संख्या के ऊपर घात 1 है।

$$\mathbf{x} = \mathbf{x}^1$$

7. यदि घातीय संख्याओं में हर को अंश के स्थान पर ले जाएं या अंश को हर में ले जाएं तो संख्या का धनात्मक घात ऋणात्मक घात में एवं ऋणात्मक घात, धनात्मक में बदल जाता है।

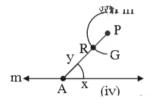
अध्याय सात

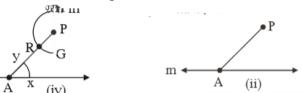
त्रिभुजों की रचना (Construction Of Triangles)

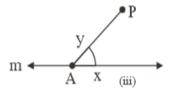
आपने पिछली कक्षा में सेट स्कायर एवं परकार की सहायता कई प्रकार की रेखागणितीय रचनाएँ बनाना सीखा है। जिनमें किसी रेखाखंड पर लंब खींचना, रेखाखंड का समद्विभाजक खींचना, अलग-अलग नाप के कोण बनाना, कोण का समद्विभाजक खींचना आदि शामिल था। इस अध्याय में आप समान्तर रेखा खींचना एवं कुछ प्रकार के त्रिभुजों की रचना करना सीखेंगे।

एक दी हुई रेखा के समांतर उस बिंदू से होकर रेखा खींचना जो उस रेखा पर स्थित नहीं है

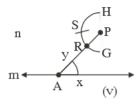
रचना-1


रचना के चरण -


एक रेखा m खींचिए और इसके बाहर बिन्दू p लीजिए। 1.



रेखा m पर एक बिन्दु A लीजिए और A और P को मिलाइए। 2.


बिंदु A को केन्द्र मान कर और कोई सुविधाजनक त्रिज्या लेकर m को X पर और AP को Y पर प्रतिच्छेद करता हुआ एक चाप खींचिए।

- अब, P को केंद्र मान कर और चरण 3 वाली ही त्रिज्या लेकर AP को R पर काटता हुआ एक चाप GH खींचिए।
- परकार के नुकीले सिरे को X पर रखिए और इसे इस प्रकार फैलाइए कि पेंसिल की नोक Y पर 5. रहे।
- R को केंद्र मानकर और परकार का फैलाव चरण 5 वाला ही रखते हुए एक चाप खींचिए जो चाप 6.

GH को S पर काटे।

7. अब SP को मिलाकर रेखा n खींचिए, जो अभीष्ट समान्तर रेखा है।

चित्र 7.1

प्रश्रावली 7.1

- 1. एक रेखा L खींचिए। इसके बाहर एक बिन्दु A लीजिए। बिन्दु । से जाने वाली तथा रेखा स के A समांतर एक रेखा की रचना कीजिए।
- 2. एक रेखा M खींचिए। इस पर कोई बिन्दु P लीजिए। बिन्दु P पर रेखा का लंब खीचिए। इस लंब रेखा पर 3 सेमी. की दूरी पर बिन्दु फ लीजिए। Q से होकर रेखा m के समांतर एक रेखा n खीचिए।

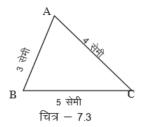
त्रिभुजों की रचना

आप यह तो जान चुके हैं कि तीन भुजाओं से मिलकर बनी हुई बन्द आकृति को त्रिभुज कहते है तथा भुजाओं की कुछ लम्बाई तो होती ही है।

एक त्रिभुज की रचना जिसकी तीनों भुजाओं के माप दिए गए हों

अगर यह कहा जाए कि आप एक ऐसा त्रिभुज बनाइये जिसकी दो भुजाओं के माप क्रमशः 3 सेमी तथा 4 सेमी हैं तो आपको क्या कठिनाई आएगी? सोचिए।

इन मापों से कितने त्रिभुज बन सकते हैं? यदि आपको कहें कि तीसरी भुजा की लम्बाई 5 सेमी होनी चाहिए, तो क्या अब आप इन मापों से त्रिभुज बना लेंगे?



चलिए, बनाकर देखते हैं:

त्रिभुज बनाने के चरण

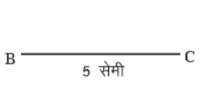
एक त्रिभुज बिना नापे प्रश्न को ध्यान में रखकर बनाइये तथा तीनों शीर्ष के नाम लिख दीजिए। कौनसी भुजा किस लम्बाई की बनानी है उसके पास लिखिए।

अब नाप के अनुसार त्रिभुज बनाते हैं।

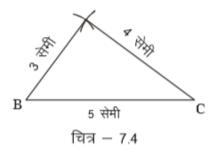
रचना-2

पहला चरण:

पटरी की मदद से 5 सेमी के माप का एक रेखाखण्ड BC खींचिए।


दुसरा चरण:

परकार को 3 सेमी फैलाकर B बिन्दु पर परकार की नोक रखिए तथा नापी गई त्रिज्या का एक चाप बनाइये।



तीसरा चरण:

परकार को 4 सेमी फैलाकर इसकी नोक को C बिन्दु पर रखिए और इसी त्रिज्या का एक चाप दूसरे चरण में बनाए गए चाप पर काटिए। कटाव बिन्दु को A नाम दीजिए। AB तथा AC को मिलाइये।

त्रिभुज ABC तैयार है।

प्रश्नावली 7.2

निम्न मापों के आधार पर त्रिभुज बनाइये -

- AB = 4 सेमी, BC = 7 सेमी, CA = 5 सेमी (i)
- AB = 5 सेमी, BC = 6 सेमी, CA = 5 सेमी (ii)
- AB = 4 सेमी, BC = 6 सेमी, CA = 7 सेमी (iii)

तीनों त्रिभुजों में C पर बना कोण नाप कर लिखें। किस त्रिभुज में कोण C सबसे बड़ा है? नीचे दिए गए नाप से त्रिभुज बनाने का प्रयास करें:-

- AB = 8 सेमी, BC = 8 सेमी, CA = 8 सेमी (i)
- AB = 4 सेमी, BC = 2 सेमी, CA = 2 सेमी (ii)
- AB = 8 सेमी, BC = 3 सेमी, CA = 4 सेमी (iii)
- AB = 5 सेमी. BC = 6 सेमी (iv)

क्या आपको ऊपर दिये गए मापों से त्रिभुज बनाने में कोई कठिनाई आई? किस प्रकार की कठिनाई आई?

इस कठिनाई को दूर करने के लिए आप क्या कर सकते हैं?

आप (ii) और (iii) त्रिभुज के मापों को एक बार दुबारा देखिए। इन मापों से क्या आप त्रिभुज बना सकते हैं?

आप को याद होगा कि त्रिभुज का एक गुण है - त्रिभुज की किन्हीं भी दो भुजाओं की मापों का योग तीसरी भुजा से अधिक होना चाहिए, तभी त्रिभुज बन सकता है।

उपरोक्त प्रश्न (ा) में त्रिभुज के माप इस प्रकार हैं - 4 सेमी, 2 सेमी, 2 सेमी। इसमें यदि 2 सेमी और 2 सेमी का योग करें तो योगफल, तीसरी भुजा (जो कि 4 सेमी है) के बराबर होता है। इसी कारण यह त्रिभुज नहीं बन सकता है।

तीसरे त्रिभुज में CA का मान कितना हो तो त्रिभुज बनेगा?

चूंकि AB = 8 सेमी, BC = 3 सेमी, तो क्या CA का मान 5 सेमी से अधिक होना चाहिए? सोच कर देखें।

ब्। का मान कितने तक हो सकता है?

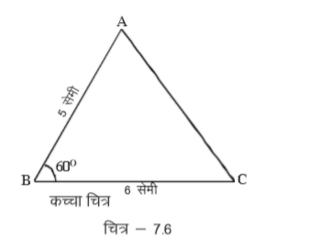
यदि CA = 11 सेमी हो तो क्या त्रिभुज बन पाएगा?

नहीं तो क्यों?

इसका अर्थ है यदि AB = 8 सेमी, BC = 3 सेमी हो तो त्रिभुज बनने के लिए CA > 5 सेमी और CA < 11 सेमी होना चाहिए। ऐसे सवाल अपने मित्रों से भी पूछें। इसी प्रकार कुछ और जोड़े लेकर तीसरी भुजा के सम्भव मापों का पता करें।

(i) में दिए गए माप की सहायता से आप किसी एक त्रिभुज को कैसे बनाएंगे? यहाँ तीसरी भुजा का तो माप ही नहीं है और जैसा कि आपने ऊपर देखा उसका माप 5 सेमी से अधिक तथा 11 सेमी से कम कुछ भी हो सकता है। एक और परिस्थिति

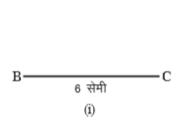
हमने देखा कि जिन त्रिभुजों की दो भुजाओं के माप दिये गए थे, और तीसरा माप नहीं था हम त्रिभुज नहीं बना पा रहे थे। तीसरी भुजा की लम्बाई के स्थान पर यदि इन दोनों भुजाओं के बीच का कोण दिया होता, तो क्या आप त्रिभुज बना पाते? बना कर देखें।

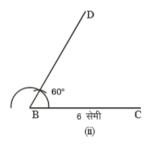


चित्र - 75

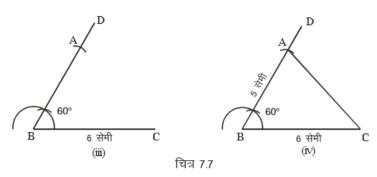
एक त्रिभुज की रचना जिसकी दो भुजाएं तथा बीच का कोण दिया हो:

(अ) मान लीजिए कि दो भुजाओं के माप 5 सेमी तथा 6 सेमी है और दोनों के बीच का कोण 60° है।


पृष्ठ के एक तरफ प्रश्न को ध्यान में रखकर, बिना नापे एक त्रिभुज बना लीजिए। इस पर भुजाएँ व कोण दी गई जानकारी के अनुसार अंकित कर लीजिए। इस प्रकार बने चित्र को कच्चा चित्र कहते हैं।

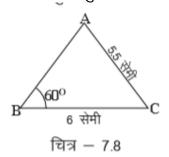


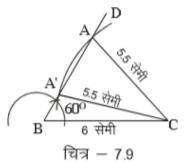
निम्नांकित चरण को ध्यान में रखते हुए नाप कर एक त्रिभुज बनाये।


रचना-3

चरण:

- 1. एक रेखा खंड BC = 6 सेमी खींचिए।
- 2. ठ पर परकार की सहायता से कोण $\angle DBC = 60^{O}$ बनाइये।
- 3. परकार को 5 सेमी फैलाकर बिन्दु B पर परकार की नोक रखिए और इसी त्रिज्या का चाप BD पर काटिए।
- 4. कटान बिन्दु Aं है। A को C से मिला लीजिए।



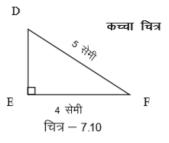

इस प्रकार त्रिभुज ABC तैयार है। इस त्रिभुज में BC = 6 cm, AB = 5 cm और $\angle ABC = 60^{\circ}$

(ब) उपरोक्त चित्र में AC को नापने पर 5.5 सेमी, प्राप्त होता है तो क्या आप एक त्रिभुज ABC की रचना कर सकते हैं जिसमें भुजाएं AC = 5.5 सेमी, BC = 6 सेमी तथा $\angle B = 60^\circ$ हो।

रचना-4

कॉपी पर एक त्रिभुज ABC का एक कच्चा चित्र बना लीजिए। इस पर भुजाएँ एवं कोण दी गई जानकारी के अनुसार अंकित कर लीजिए।

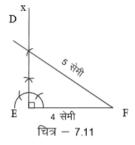
चरण:


एक रेखा खंड BC = 6 सेमी खींचिए।

- 1. B पर परकार से $\angle DBC = 60^{\circ}$ कोण बनाइये।
- 2. परकार से 5.5 सेमी त्रिज्या का चाप लेकर C पर परकार की नोंक रखिए तथा BD पर चाप काटिए।
- 3. आप देखते है कि 5.5 सेमी का चाप ठक् रेखा को दो बिन्दुओं A तथा A' पर काटता है। अतः दो त्रिभुज ABC व त्रिभुज A'BC प्राप्त होते हैं।
- 4. परंतु चाप AC यदि 6 सेमी से बड़ा हो तब भी क्या दो त्रिभुज बनेंगे।

क्रियाकलाप 1.

इसी चित्र में आप 5.5 सेमी की जगह अन्य माप की त्रिज्या लेकर C बिन्दु पर परकार की नोक रखकर BD को काटिए और देखिए कि आपके द्वारा बनाया गया चाप BD को दो बिन्दुओं पर काटता है या नहीं? यही क्रियाकलाप बिन्दु B पर बने कोण के मान को कम करके भी कीजिए और निष्कर्ष लिखिए।



रचना-5

पृष्ठ पर त्रिभुज DEF का कच्चा चित्र बना लीजिए। इस पर भुजाएँ एवं कोण दी गई जानकारी के अनुसार अंकित कर लीजिए। चरण:

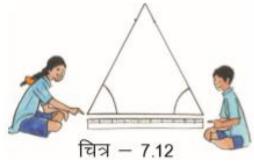
- a. एक रेखा खंड EF = 4 सेमी खींचिए।
- b. E पर ∠XEF = 90° बनाइये।
- परकार में 5 सेमी त्रिज्या का चाप लेकर F पर परकार की नोक रखिए तथा EX पर चाप काटिए।
- d. यह बिन्दु D है। DF को मिला लीजिए।

क्रियाकलाप 2.

- (1) अपनी कॉपी पर 6 सेमी की एक रेखा ठब् खींचिए।
- (2) बिन्दु B पर ∠CBD = 90° का कोण बनाइए।
- (3) 6 सेमी से ज्यादा माप की त्रिज्या लेकर ब् बिन्दु पर परकार की नोक रखकर DB पर चाप काटिए।

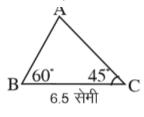
अलग-अलग माप की त्रिज्या का चाप काटकर यह पता लगाइए कि कोई माप ऐसा है जिससे DB दो बिन्दुओं पर कटता है?

क्रियाकलाप 3.


यही प्रक्रिया आप बिन्दु B पर 90° से अधिक माप का कोण बनाकर कीजिए तथा निष्कर्ष लिखिए।

ं ऊपर किए गए क्रियाकलापों की सहायता से आप इस निष्कर्ष पर पहुँचते है कि यदि दो भुजाएँ और उनके बीच के कोण के स्थान पर अन्य कोई कोण दिया हुआ हो तो त्रिभुज की रचना तभी की जा सकती है, जब उस भुजा (जिसके बराबर चाप काटना है) का मान दी गई भुजा जिस आधार पर कोण बना है, से अधिक हो।

प्रश्नावली 7.3


त्रिभुज की रचना कीजिए जिनके माप निम्न है:

- 1. BC = 5 सेमी, $\angle B = 60^{\circ}$, AB = 3 सेमी
- 2. BC = 8 सेमी∠ $B = 70^{\circ}$, AB = 4 सेमी
- और भी ऐसे आंकड़े बनाइए और उनके आधार पर त्रिभुज का निर्माण किरए।

इन्हें भी बनाएं:

आप सोचिए कि यदि किसी त्रिभुज के दो कोण और एक भुजा का माप दिया हो तो क्या आप त्रिभुज बना पाएंगे? आइये बनाकर देखते हैं -

कच्चा चित्र चित्र – 7.13

ऐसे त्रिभुज की रचना जिसकी एक भुजा और दो कोण दिये हों माना कि BC = 6.5 सेमी, $\angle B = 60^\circ$ और $\angle C = 45^\circ$ है।

रचना-6

चरण:

- 1. एक रेखा खंड BC = 6.5 सेमी खींचिए।
- 2. बिन्दु B पर BD इस प्रकार बनाते है कि $\angle CBD = 60^\circ$
- बिन्दु C पर CE इस प्रकार बनाते हैं कि ∠BCE= 45° तथा
 CE, DB को A पर काटे।
- त्रिभुज ABC तैयार है।
 अब यह बताइये कि कोण ∠CAB का माप कितना है?
 कैसे पता किया?

क्या प्रत्येक त्रिभुज में हम दो कोणों का माप पता होने पर तीसरे कोण का माप पता कर सकते हैं? त्रिभुज के दो-दो कोणों के कुछ और जोड़े सोचिए और पता कीजिए कि तीसरे कोण का माप क्या होगा?

एक और स्थिति देंखिए:

माना BC = 6.5 सेमी, $\angle C = 60^{\circ}$, $\angle A = 75^{\circ}$

इस उदाहरण में हमें BC पर बनने वाला एक ही कोण पता है। हमें रचना प्रारम्भ करने से पहले कोण ∠B का मान चाहिए।

आपने पिछली कक्षा में पढ़ा है कि त्रिभुज के तीनों अन्तः कोणों के मापों का योग 180° होता हैं।

उपरोक्त स्थिति में दिये हुए दो कोण 60° और 70° के हैं।

$$\angle B = 45^{\circ}$$

क्या अब आप आसानी से त्रिभुज बना सकते हैं? यदि हाँ, तो बनाकर देखिए।

प्रश्नावली 7.4

- 1. ΔPQR की रचना कीजिए जब PQ=4 सेमी, QR=3 सेमी तथा RP=5.5 सेमी हो।
- 2. ΔUVW की रचना कीजिए जब WU = UV = 5.5 सेमी, तथा $\angle VUW = 45^{\circ}$ हो।
- 3. ΔABC की रचना कीजिए जब BC=3.5 सेमी, $\angle B=30^{\circ}$ और $\angle A=45^{\circ}$ हो। प्रत्येक में रचना के चरण भी लिखिए।

हमने सीखा

- 1. त्रिभुज की तीनों भुजाओं के माप दिये होने पर त्रिभुज बनाया जा सकता है।
- 2. त्रिभुंज की दो भुजाओं का माप तथा उनके बीच कोण दिया होने पर त्रिभुंज बनाया जा सकता है।
- 3. त्रिभुंज की एक भुंजा का माप तथा दो कोण दिये होने पर त्रिभुंज बनाया जा सकता है।
- 4. त्रिभुज में दो भुजाओं का योग तीसरी भुजा से अधिक हो, तभी त्रिभुज बन सकता है।

अध्याय आठ

सर्वांगसमता (Congruence)

भूमिका

स्कूल की छुट्टी के बाद राधा अपने मित्रों के साथ घर लौट रही थी। रात में आंधी तूफान आने से पेड़ के पत्ते पूरे रास्ते में गिरे हुए थे। राधा ने एक पत्ता उठाकर देखा, उसे वह खूब सुन्दर लगा। वह उसी तरह का दूसरा पत्ता ढूँढने लगी। उसने अपने दोस्तों से भी कहा कि चलो हम एक खेल खेलें- एक ही आकार के पत्ते इकट्ठा करें, 100 गिनने तक जो सबसे अधिक एक जैसे आकार के पत्ते इकट्ठे कर लेगा, वही इस खेल का विजेता होगा।

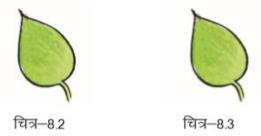
राधा ने गिनती शुरू की और अपने दोस्तों के साथ पत्ते इकट्ठे करने में जुट गई। राजेश ने तीन, हरि ने चार और अनु ने दो तथा राधा ने तीन पत्ते इकट्ठे किए। अब बारी थी पत्तों की जाँच की। कैसे पता करें कि कोई दो पत्ते एकदम एक ही आकार के हैं? क्या आप कोई तरीका सोच सकते हैं।

अनु ने कहा- मेरे द्वारा एकत्र किए गए दोनों पत्ते एकदम एक जैसे हैं। एक पत्ते के ऊपर दूसरा

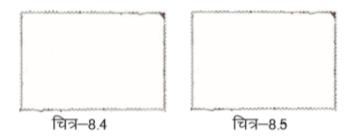
पत्ता रखकर मैंने मिलान कर लिया है, दोनों पत्ते एक-दूसरे को पूरी तरह से ढंक लेते हैं अर्थात् जिस प्रकार ऊपर वाली पत्ती नीचे वाली पत्ती को पूरी तरह से ढंक लेती है, उसी प्रकार नीचे वाली पत्ती भी ऊपर वाली पत्ती को पूरी तरह ढंक लेती है। अब सभी ने इसी तरीके से अपनी-अपनी पत्तियों का मिलान किया और मिलान करके पाया कि सभी के मात्र 2-2 पत्ते ही ऐसे हैं जो आकार में एकदम एक जैसे हैं।

क्रियाकलाप-1

आप भी अपने आस-पास इसी प्रकार पूर्णतः समान आकार वाली वस्तुओं का पता लगाइए तथा नीचे दी गई समान आकार वाली वस्तुओं की सूची में उन्हें जोड़िए।


जैसे-

1.	1000	2.	X X
3.		4.	
5.		6.	
7.		8.	
9.		10.	


ऐसी दो समान आकृतियाँ जो एक-दूसरे को पूरी तरह से ढंक ले, वे सर्वांगसम आकृतियां

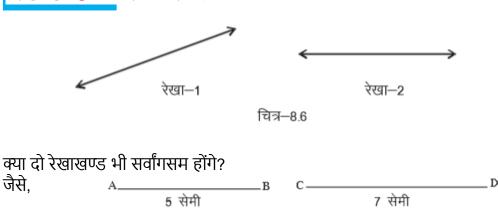
(Congruent) कहलाती हैं। इस गुण को सर्वांगसमता (Congruence) कहते हैं। सर्वांगसमता को ≅ चिह्न से दर्शाते हैं।

क्या आप अपनी कॉपी में दो सर्वांगसम आकृतियाँ बना सकते हैं? राधा ने एक पत्ती के किनारे-किनारे पेंसिल चलाकर एक ही जैसी दो आकृतियाँ बनाई।

अनु ने एक डाक टिकट के चारों ओर पेंसिल चलाकर निम्नानुसार दो आकृतियां बनाई-

राजेश के पास एक कार्बन था। उसने कॉपी के पेज के नीचे कार्बन लगाया और ऊपर वाले पेज पर एक आकृति बनाई। उसने पाया कि ठीक वहीं आकृति कार्बन के नीचे वाले पेज पर भी बन गयीं।

हरि ने एक रूपये का सिक्का लिया और उसके बाहरी सीमा पर पेंसिल चलाकर एक ही आकार की दो आकृतियाँ बनायी।

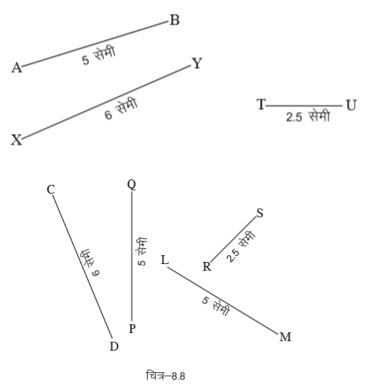

काँपी में सभी ने दो-दो आकृतियां तो बना ली किन्तु अब प्रश्न यह था कि इनकी तुलना कैसे की जाए। दो पत्तियों या दो नोटों को तो एक-दूसरे के ऊपर रखकर यह देख सकते हैं कि वे सर्वांगसम हैं या नहीं। परन्तु दो आकृतियों की सर्वांगसमता की जांच किस प्रकार की जाए?

चित्र-8.4 एवं चित्र-8.5 में दी गई आकृतियां सर्वांगसम है अथवा नहीं, इसकी जांच कैसे करेंगे? ज्यामिति में सर्वांगसमता

जिस प्रकार एक पत्ते को उसके आकार एवं माप में परिवर्तन किए बिना एक स्थान से उठाकर दूसरे स्थान पर रखा जा सकता है, उसी प्रकार से ज्यामिति में भी एक आकृति को उसके माप एवं आकार में परिवर्तन किए बिना एक स्थान से दूसरे स्थान पर ले जाया जा सकता है। इसे ज्यामिति में "अध्यारोपण की स्वयं सिद्धि" (Axiom Of Supervision) कहते हैं।

टीप- दो सरल रेखाएं सदैव सर्वांगसम होती है क्योंकि एक सरल रेखा के ऊपर दूसरी सरल रेखा रखने पर वे एक-दूसरे को पूरी तरह से ढक लेंगी।

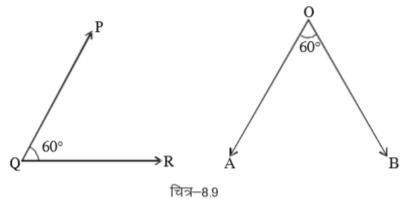
रेखाखण्डों की सर्वांगसमता



रेखाओं की लम्बाई असीमित होती है, इसलिए किन्हीं भी दो सरल रेखाओं को एक-दूसरे के ऊपर रखने से वे परस्पर ढंक लेंगी, किन्तु रेखाखण्ड की लम्बाई निश्चित होती है, तो फिर एक 5 सेमी लम्बा रेखाखण्ड, 7 सेमी लंबाई वाले रेखाखण्ड को पूरी तरह कैसे ढंक सकती है? अतः दो रेखाखण्ड तभी सर्वांगसम होंगे जब उनकी लम्बाईयाँ समान हों।

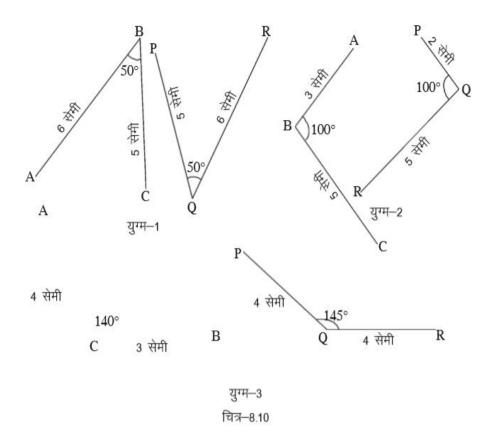
चित्र-8.7

क्रियाकलाप-2

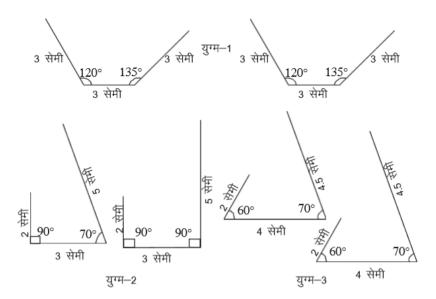

नीचे कुछ रेखाखण्ड दिए गए हैं। उनमें से सर्वांगसम रेखाखण्डों को छांटिए-

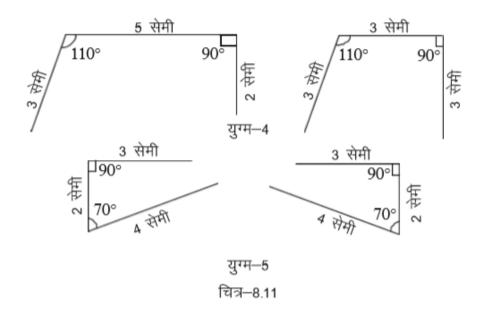
यहां 5 सेमी लंबाई वाले सभी रेखाखण्ड, 2.5 सेमी लम्बाई वाले सभी रेखाखण्ड तथा 6 सेमी लम्बाई वाले सभी रेखाखण्ड परस्पर सर्वांगसम हैं। अर्थात AB≅PQ≅LM, CD≅XYऔर RS≅TU

कोणों में सर्वांगसमता


नीचे दो कोण दिये गये हैं। क्या आप बता सकते हैं कि वे सर्वांगसम हैं या नहीं?

ज्यामिति में किसी भी आकृति को उसके माप व आकार को बिना बदले एक स्थान से दूसरे स्थान पर ले जाया जा सकता है यदि $\angle PQR$ को ट्रेस करके $\angle AOB$ के ऊपर रखा जावे तो दोनों एक-दूसरे को पूर्णतः ढक लेंगे। कोण समान होनें के कारण किरण OA तथा किरण के OB मध्य झुकाव वही है, जो किरण तथा किरण के मध्य है। इसलिए OA पर QR एवं OB पर QP किरणें पड़ेंगी। चूंकि OA, OB, QP एवं QR सभी किरणें हैं इसलिए इनका विस्तार भी अपरिमित है, अतः किरणें OA तथा QR तथा QB व OP अनंत तक एक-दूसरे को ढंके रहेंगी।

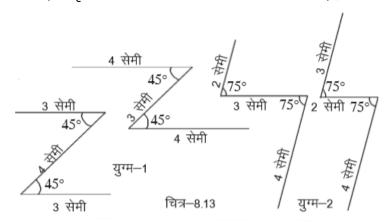

नीचे समान कोण वाले सभी चित्रों के कुछ युग्म दिये हुए हैं। इनमें कौन-कौन से युग्मों के कोण सर्वांगसम हैं, लिखिए। (ट्रेस पेपर पर ट्रेस करके देख लेवें।)

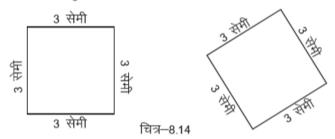

दो कोण सर्वांगसम होंगे यदि उनके माप समान हो। कोण बनाने वाली भुजाओं के माप अलग-अलग हैं या समान हैं, इससे कोई फर्क नहीं पड़ता।

क्रियाकलाप-3

नीचे दिये गये युग्मों में प्रत्येक में दो-दो आकृतियां दी गई हैं। किन-किन युग्मों की आकृतियां सर्वांगसम हैं? छाँटकर ✔ का चिह्न लगाइए-

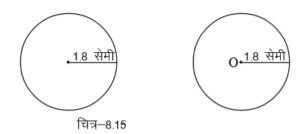
ऊपर के चित्रों में युग्म-1, युग्म 3 एवं युग्म-5 की आकृतियाँ सर्वांगसम है परन्तु युग्म- 2, 4 की आकृतियाँ सर्वांगसम नहीं है। क्या आप बता सकते हैं कि कोई भी दो आकृतियाँ सर्वांगसम कब होंगी?


दो आकृतियों के सर्वांगसम होने का अर्थ यह है कि दोनों आकृतियां माप एवं आकार में समान हैं, सिर्फ उनकी स्थितियाँ अलग-अलग हैं। अर्थात् यदि इन आकृतियों एक-दूसरे के ऊपर रखें तो वे परस्पर पूर्णतः ढंक लेंगी। माप समान होने का अर्थ है कि पहली आकृति की प्रत्येक भुजा एवं कोण के माप की संगत भुजा एवं संगत कोण दूसरी आकृति में भी है। संगतता को \(\rightarrow\) चिह्न से दर्शाते हैं। जैसे- युग्म-5 की पहली आकृति के कोण 90° एवं 70° के हैं, दूसरी आकृति में भी कोण 90° व 70° के हैं। दोनों आकृतियों में उभयनिष्ठ भुजा की माप 2 सेमी है और 90° का कोण बनाने वाली भुजाओं की लम्बाई 2 सेमी एवं 3 सेमी है। इसी प्रकार 70° का कोण बनाने वाली भुजाएँ 2 सेमी एवं 4 सेमी है। यदि युग्म-5 की एक आकृति को दूसरी पर रखा जावे तो वे एक दूसरे को पूर्णतः ढंक लेंगी इसलिए दोनों आकृतियाँ सर्वांगसम होंगी। क्या नीचे दी गई आकृतियां सर्वांगसम हैं? यदि नहीं तो क्यों?


यहां दोनों आकृतियों में कोण तो 90° एवं 70° के हैं किन्तु संगत भुजाएं (जैसे उभयनिष्ठ भुजा) समान माप के नहीं हैं। उसी प्रकार पहली आकृति के 3 सेमी वाली भुजा के संगत दूसरी आकृति की भुजा की माप 2 सेमी है। अतः दोनों आकृतियां सर्वांगसम नहीं हैं।

क्रियाकलाप-४

नीचे दी गई आकृतियां सर्वांगसम हैं या नहीं ? कारण बताइए-



क्या दो वर्ग जिनकी भुजाएं समान माप की हों, सर्वांगसम होते हैं?

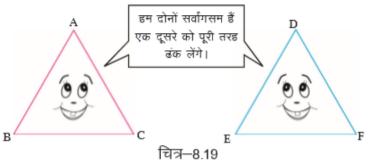
वर्ग के सभी कोण 90° के होते है एवं सभी भुजाएं बराबर होती हैं, **अतः दो वर्गों की भुजाएं यदि** समान माप की हो तो वर्ग सर्वांगसम होंगे।

उसी प्रकार, यदि दो वृत्तों की त्रिज्याएं समान हों, तो वे वृत्त सर्वांगसम होंगें।

त्रिभुजों की सर्वांगसमता

अब आप समझ ही चुके होंगे कि दो या दो से अधिक रेखाखण्डों से बनी हुई आकृतियाँ तभी सर्वांगसम होंगी, जब पहली आकृति की सभी भुजाएं दूसरी आकृति की संगत भुजाओं के तुल्य हों तथा पहली आकृति के सभी कोण दूसरी आकृति के संगत कोणों के तुल्य हों।

क्रियाकलाप-5


नीचे सर्वांगसम त्रिभुजों के जोड़े दिए गए हैं। उनमें पहले त्रिभुज की कौन-कौन सी भुजाएं एवं कोण, दूसरे त्रिभुज की किस-किस संगत भुजा एवं कोण के तुल्य हैं? लिखिए-

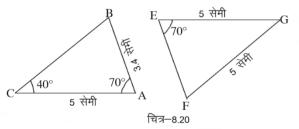
चि.सं.	सर्वांगसम त्रिभुज	समान भुजाएं	समान कोण
8.16	C R	AB = PQ	∠CBA = ∠RPQ
	集63°43 两	BC = PR	∠BCA = ∠PRQ
	A Q 27° 90° N A Q 3.8 सेमी P	CA = RQ	∠CAB = ∠RQP
8.17	F 3 समी G T T T T T T T T T T T T T T T T T T		
8.18	D J 6.9 सेमी I D J19° 45° I 116° 45° I E 45° 19° H F H Y		

यदि दो सर्वांगसम त्रिभुजों में से एक त्रिभुज को दूसरे त्रिभुज के ऊपर रखें तो पहले त्रिभुज के जो शीर्ष, दूसरे त्रिभुज के जिस शीर्ष को ढंकते हैं वे परस्पर संगत होते हैं तथा पहले त्रिभुज की जो भुजा दूसरे त्रिभुज की जिस भुजा को ढकती है, वह भी संगत होते हैं। इसी प्रकार पहले त्रिभुज के जो कोण दूसरे त्रिभुज के जिस कोण को पूरा-पूरा ढंकते हैं, वे भी संगत होते हैं।

उदाहरण- दो सर्वांग्सम त्रिभुजों ABC और DEF को एक-दूसरे के ऊपर रखने पर यदि

शीर्ष A शीर्ष B पर पड़ता है शीर्ष B शीर्ष E पर पड़ता है और शीर्ष C शीर्ष F पर पड़ता है

तो हम कहेंगे कि $\triangle ABC$ सर्वांगसम है $\triangle DEF$ के न कि $\triangle EDF$ या $\triangle FDE$ या $\triangle FED$ के। क्योंकि शीर्ष $A\leftrightarrow$ शीर्ष कु पर, शीर्ष $B\leftrightarrow$ शीर्ष E पर तथा शीर्ष $C\leftrightarrow$ शीर्ष F पर पड़ती है।


अर्थात् अब हम कह सकते हैं ΔBAC ≅ ΔEDF

- अब आप बताइए कि क्या
- 1) $\Delta CAB \cong \Delta FDE$
- 2) $\Delta CBA \cong \Delta FED$
- 3) $\Delta BCA \cong \Delta EFD$
- Δ ACB \cong Δ DFE होगा?

अपने उत्तर का कारण भी दीजिए।

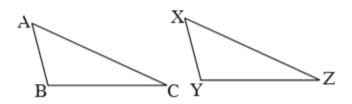
उदाहरण 1. संलग्न चित्र में $\triangle ABC \cong \triangle EFG$ है। निम्न का मान ज्ञात कीजिए-

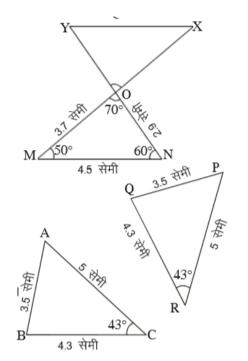
- 1) EF का मान
- 2) BC का मान
- 3) ∠G का मान
- 4) ∠F का मान

हल दिया गया है कि $\triangle ABC \cong \triangle EFG$

अतः ΔABC के सभी अवयव ΔEFG के सभी संगत अवयवों के बराबर होंगे।

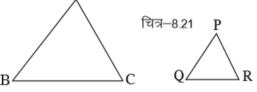
- 1) चूंकि EF \leftrightarrow AB, ∴ EF = 3.4 सेमी
- 2) चूंकि BC \leftrightarrow FG, \therefore BC = 5 सेमी
- 3) चूंकि $\angle G \leftrightarrow \angle C$, $\angle G = 40^\circ$


 $\therefore \angle F = 70^{\circ}$


4) $\angle EFG \stackrel{?}{H}, \angle E + \angle F + \angle G = 180^{\circ}$ $\Rightarrow 70^{\circ} + \angle F + 40 = 180^{\circ} (\angle G = 40^{\circ})$ $\Rightarrow \angle F + 110^{\circ} = 180^{\circ}$ $\Rightarrow \angle F = 180^{\circ} - 110^{\circ}$

प्रश्रावली 8.1

- प्र.1 यदि $\triangle ABC \cong \triangle XYZ$ हो, तो लिखिए-
 - 1. ∠A =
 - 2. = ∠Y
 - 3.= ∠Z
 - 4. AB =
 - 5. YZ
 - 6.= XZ
- प्र.2 यदि Δ MON $\cong \Delta$ XOYहो, तो Δ XOY की भुजाओंे और कोणों की माप बताइए।
- प्र.3 यदि $\triangle ABC \cong \triangle PQR$ हो, तो निम्नांकित में से सत्य एवं असत्य कथनों के लिए बॉक्स में सही (\checkmark)या गलत (\times) का चिह्न लगाइए।
 - 1. $\triangle ABC \cong \triangle PQR$
 - 2. $\triangle BCA \cong \triangle RPQ$
 - 3. $\Delta CAB \cong \Delta RPQ$
 - 4. भुजा AC = भुजा QR
 - 5. $\angle B = \angle Q$
 - 6. $\triangle PRQ \cong \triangle ACB$
 - 7. $\angle P = \angle C$


त्रिभुजों में सर्वांगसमता की जाँच के नियम

दो त्रिभुज सर्वांगसम होने पर एक त्रिभुज के सभी कोण दूसरे त्रिभुज के संगत कोणों के बराबर होते हैं, किन्तु क्या एक त्रिभुज के सभी कोण दूसरे त्रिभुज के संगत कोणों के बराबर होने पर दोनों त्रिभुज सर्वांगसम होंगे?

$$\angle C = \angle R$$

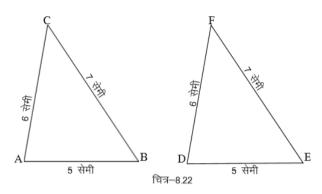
ऊपर ΔABC और ΔPQR के संगत कोण आपस में बराबर हैं परन्तु दोनों त्रिभुज सर्वांगसम नहीं है। क्यों? "एक त्रिभुज के तीनों कोण दूसरे त्रिभुज के तीनों संगत कोणों के बराबर होने मात्र से ही दोनों त्रिभुज सर्वांगसम नहीं होते हैं बल्कि उनकी संगत भुजाएं भी आपस में बराबर होनी चाहिए।" इस प्रकार दोनों त्रिभुजों के तीनों संगत कोण और तीनों संगत भुजाएं अर्थात् सभी छः संगत अवयवों के माप समान होने चाहिए।

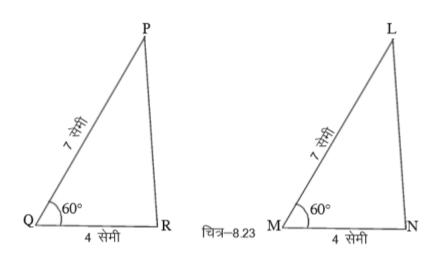
आपने त्रिभुजों की सर्वांगसमता के बारे में पढ़ा है। आप त्रिभुज की रचना करना भी जानते हैं, क्या आप दो सर्वांगसम त्रिभुजों की रचना कर सकते हैं?

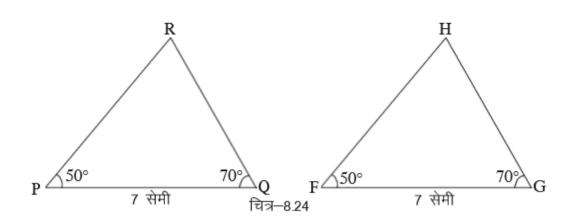
सभी विद्यार्थी त्रिभुज की रचना करना जानते थे किन्तु दो सर्वांगसम त्रिभुज की रचना कैसे की जाए? वे सोचने लगे। तभी राजेश ने कहा- "किसी त्रिभुज की रचना कुछ मापों को लेकर की जाती है। यदि समान मापों को लेकर दो त्रिभुज की भी रचना कर दी जाए तो दोनों त्रिभुजों की सभी भुजाएं एवं कोणों के माप समान होंगे। इस प्रकार बने दोनों त्रिभुज सर्वांगसम होंगे।"

अनु ने कहा, "हमने तीन प्रकार से त्रिभुज बनाना सीखा है। पहला- जब तीनों भुजाएं दी हुई हों, दूसरा- जब दो भुजाएं और उनके बीच का कोण दिया हुआ हो तथा तीसरा- जब एक भुजा एवं दो कोण दिए हुए हों। इन तीनों प्रकार से हम एक ही माप की दो-दो त्रिभुजें बनाकर सर्वांगसम त्रिभुज बना सकते हैं। चलो ऐसे ही मापों को लेकर हम दो-दो सर्वांगसम त्रिभुज बनाते हैं।

आप भी त्रिभुजों की रचना सम्बन्धी प्रश्न बनाइए और अपने साथियों को आपके द्वारा दिए गए मापों के सर्वांगसम त्रिभुज की रचना करने को दीजिए।

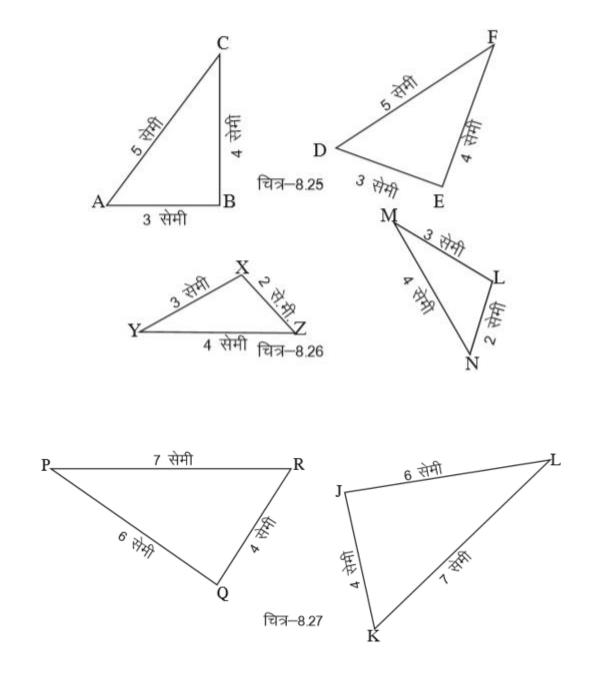

क्रियाकलाप-६


राधा ने प्रश्न बनाया- "सर्वांगसम त्रिभुजों की रचना कीजिए जिनकी भुजाओं के माप क्रमशः 5 सेमी, 6 सेमी और 7 सेमी हैं।"


अनु ने प्रश्न बनाया- "सर्वांगसम त्रिभुजों की रचना कीजिए जिनकी दो भुजाएं क्रमशः 4 सेमी और 7 सेमी है तथा इन भुजाओं के बीच का कोण 60° है।

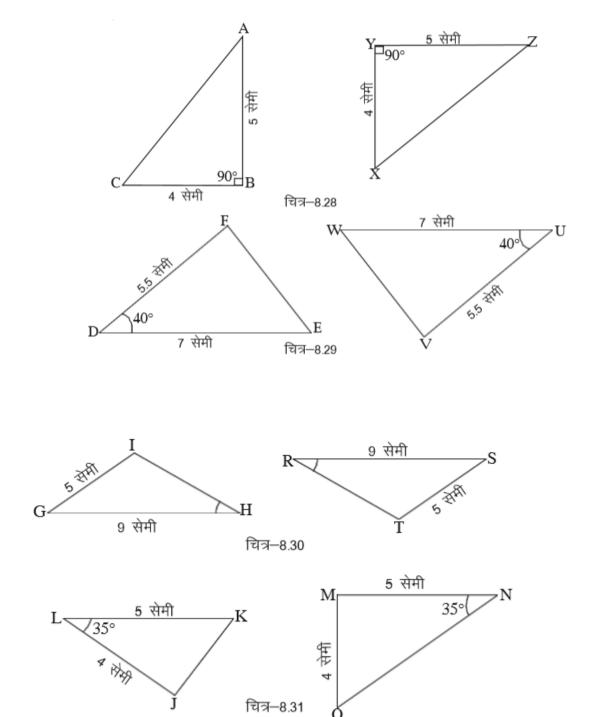
हरि ने प्रश्न बनाया- ''सर्वांगसम त्रिभुजों की रचना कीजिए जिसकी एक भुजा की माप 7 सेमी तथा उस भुजा पर बने कोण क्रमश 50° और 70° के हैं।

राधा, अनु और हिर द्वारा बनाए गए प्रश्नों के अनुसार दो-दो त्रिभुज नीचे बनाए गए हैं। आप इन त्रिभुजों के सभी अवयवों का माप ज्ञात कर देखिए कि ये सर्वांगसम हैं अथवा नहीं?



ऊपर चित्र क्रमांक-8.22 में त्रिभुजों की संगत भुजाएं समान माप की हैं और आप पाते हैं कि त्रिभुजों के संगत कोणों की माप भी समान है। अतः दोनों त्रिभुज सर्वांगसम हैं। तो क्या हमेशा दो त्रिभुजों की संगत भुजाएं समान होने पर दोनों त्रिभुज सर्वांगसम होंगे?

इसी प्रकार चित्र क्रमांक-8.23 में दोनों त्रिभुजों की दो भुजा और उनके बीच का कोण बराबर माप की है और आप पाते हैं कि दोनों त्रिभुज सर्वांगसम है तथा चित्र क्रमांक-8.24 में दोनों त्रिभुजों की दो कोण और एक भुजा बराबर माप की है। आप यह भी पायेंगे कि ये दोनों त्रिभुज सर्वांगसम हैं। तो क्या हर बार इन गुणों के आधार पर हम कह सकते हैं कि दोनों त्रिभुज सर्वांगसम होंगे? आइए, जांच करें-


भुजा-भुजा-भुजा (S.S.S) सर्वांगसमता नियम

चित्र-8.25, 8.26 एवं 8.27 में दिए गए त्रिभुज सर्वांगसम हैं। अतः किसी त्रिभुज की भुजाएं दूसरे त्रिभुज की संगत भुजाओं के बराबर हों तो वे त्रिभुज सर्वांगसम त्रिभुज कहलाते हैं। सर्वांगसम होने के इस गुण को भुजा-भुजा-भुजा सर्वांगसमता या संक्षेप में भु-भु-भु सर्वांगसमता (S.S.S. Congruence) कहते हैं।

भुजा कोण भुजा(SAS) सर्वांगसमता नियम

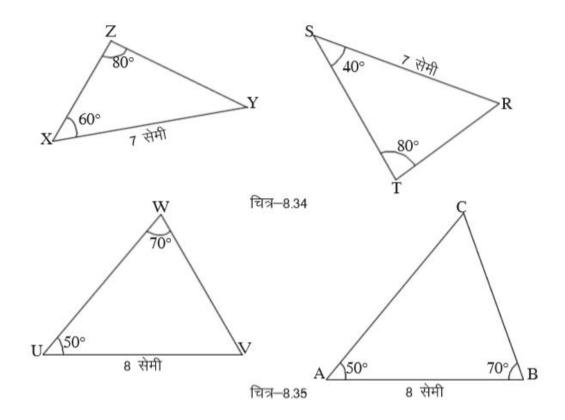
नीचे चित्रों में दो-दो त्रिभुजों का युग्म दिया गया है। प्रत्येक युग्म में पहले त्रिभुज की दो भुजाएं और उनके बीच का कोण दूसरे त्रिभुज की संगत दो भुजाओं और एक कोण के बराबर है। दोनों त्रिभुज सर्वांगसम है या नहीं? जांच कीजिए-

उपरोक्त चित्र-8.28, 8.29 एवं 8.30 में दिए गए त्रिभुज सर्वांगसम हैं किन्तु चित्र-8.31 में दिए गए त्रिभुज सर्वांगसम नहीं है। क्यों? सोचकर कारण अपनी कॉपी में लिखिए।

चित्र-8.31 में संगत भुजाएं तो समान माप की है किन्तु संगत दोनों कोणों की माप समान नहीं हैं क्योंकि पहले त्रिभुज में 35° का कोण 4 सेमी और 5 सेमी माप की भुजाओं के मध्य बना है परन्तु दूसरे त्रिभुज में 35° का कोण 5 सेमी माप की भुजा और तीसरी भुजा के मध्य बना है। इस कारण पहले त्रिभुज

के सभी छः अवयव दूसरे त्रिभुज के सभी छः संगत अवयवों के समान नहीं हो रहे हैं। अतः त्रिभुज सर्वांगसम नहीं है।

यदि पहले त्रिभुज की दो भुजाएं एवं उनके बीच का कोण, दूसरे त्रिभुज की संगत दो भुजाओं एवं उनके बीच कोण के बराबर हो, तो वे दोनों त्रिभुज सर्वांगसम होते हैं तथा इस सर्वांगसमता को "भुजा-कोण-भुजा सर्वांगसमता" या संक्षेप में भु-को-भु सर्वांगसमता (SAS Congruence) कहते हैं।


कोण भुजा कोण (A.S.A)सर्वांगसमता

पहले त्रिभुज की एक भुजा दूसरे त्रिभुज की संगत भुजा के समान हो तथा पहले त्रिभुज के दो कोण दूसरे त्रिभुज के दो संगत कोणों के समान हो तो दोनां त्रिभुज सर्वांगसम होते है। सर्वांगसमता के इस गुण को कोण-भुजा-कोण सर्वांगसमता या संक्षेप में "को-भु-को" सर्वांगसमता (ASA Congruence) कहते हैं।

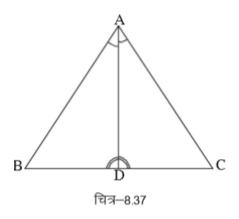

क्रियाकलाप-7

नीचे चित्रों में दो-दो त्रिभुजों के युग्म दिए गए हैं। प्रत्येक युग्म में पहले त्रिभुज की एक भुजा और दो कोण, दूसरे त्रिभुज की संगत भुजा और दो कोण के बराबर है। प्रत्येक युग्म के दोनों त्रिभुजों के सभी भुजा और कोणों को माप कर जाँच कीजिए कि दोनों त्रिभुज सर्वांगसम हैं अथवा नहीं। यदि नहीं तो क्यों?

उदाहरण 2. नीचे दो त्रिभुज CAB और RPQ दिये गये हैं। बताइये कि दोनांे त्रिभुज सर्वांगसम है या नहीं? शेष अवयवों को मापकर उनके बीच सम्बन्ध बताइए।

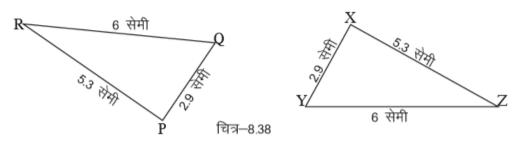
हल यहां $\triangle CAB$ और $\triangle RPQ$ में,

$$BC = QR = 4$$
 सेमी


$$\angle B = \angle Q = 120^{\circ}$$

और AB = PQ = 3 सेमी

यहाँ की ∆CAB दो भुजाएँ और उनके बीच का कोण ∆RQP की दो संगत भुजाओं और उनके बीच के कोण के बराबर है।


अतः भुजा-कोण-भुजा (S.A.S.) सर्वांगसमता से स्पष्ट है कि ∆CAB≅∆RPQ पुनः दोनों त्रिभुजों में, AC = PR = 6.1 सेमी, $\angle C = \angle R = 26^\circ$ एवं $\angle A = \angle P = 34^\circ$ अतः भुजा $AC \leftrightarrow \lambda$ भुजा $AC \leftrightarrow \lambda$ भुजा $AC \leftrightarrow \lambda$ भुजा $AC \leftrightarrow \lambda$ भुजा $AC \leftrightarrow \lambda$

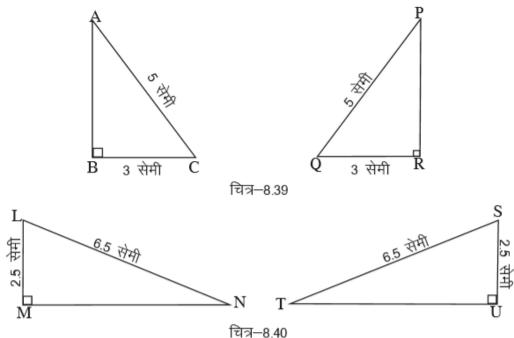
उदाहरण 3. नीचे आकृति में दो त्रिभुज दिये गये हैं। दोनों त्रिभुजों में जो संगत भाग बराबर हैं, उन्हें दर्शाया गया है। बताइए कि △ABD≅△ACD है या नहीं?

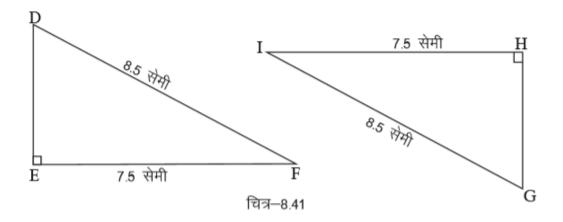
हल चित्र में △ABD और △ACD बनते हैं। जिसमें ∠BAD = ∠CAD (चित्र में दिया हुआ है) AD = AD (उभयनिष्ठ है) और ∠ADB = ∠ADC (चित्र में दिया हुआ है) अतः कोण-भूजा-कोण (A.S.A.) सर्वांगसमता से, △ABD≅△ACD

उदाहरण 4. नीचे दिए हुए त्रिभुजों में भुजाओं की मापों को देखकर सर्वांगसमता स्थापित कीजिए-

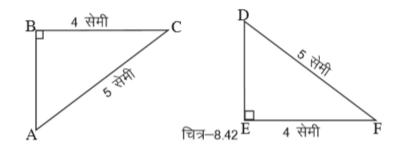
हल दिये गये चित्रानुसार ΔPQR और ΔXYZ में, PQ = XY = 2.9 सेमी (चित्र में दिया हुआ है) QR = YZ = 6 सेमी (चित्र में दिया हुआ है) RP = ZX = 5.3 सेमी (चित्र में दिया हुआ है) अतः भुजा-भुजा-भुजा (S.S.S.) सर्वांगसमता से, $\Delta PQR \cong \Delta XYZ$

अर्थात् दोनों त्रिभुज सर्वांगसम हैं।


समकोण कर्ण भुजा (R.H.S) नियम


सर्वांगसमता के तीनों नियम सभी त्रिभुजों पर लागू होते हैं, परन्तु समकोण कर्ण भुजा नियम समकोण त्रिभुज पर ही लागू होता है।

"यदि किसी समकोण त्रिभुज का कर्ण व एक भुजा दूसरे समकोण त्रिभुज के कर्ण व एक भुजा के बराबर हो तो दोनों त्रिभुज सर्वांगसम होते हैं। सर्वांगसमता के इस गुण को समकोण कर्ण भुजा सर्वांगसमता R.H.S. Congruence) कहते हैं।

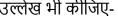

क्रियाकलाप-8

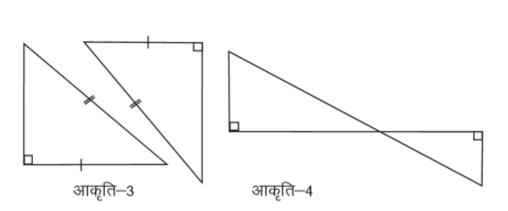
आगे चित्रों में दो-दो समकोण त्रिभुजों के युग्म दिए गए हैं। प्रत्येक युग्म में पहले त्रिभुज का कर्ण व भुजा, दूसरे त्रिभुज के कर्ण व भुजा के बराबर हैं। प्रत्येक युग्म के दोनों त्रिभुजों की तीसरी भुजा व कोणों को माप कर जाँच कीजिए कि दोनों त्रिभुज सर्वांगसम है अथवा नहीं। यदि नहीं तो क्यों?

नीचे दिए गए त्रिभुजों को देखकर बताइए कि ∆ABC≅∆DEF है या नहीं? कारण भी उदाहरण 5. दीजिए।

दिये गये ΔABC और ΔDEF में, हल AC = DF = 5 सेमी (कर्ण) BC = EF = 4 सेमी (भुजा)

और $\angle B = \angle E = 90^{\circ}$ (समकोण)

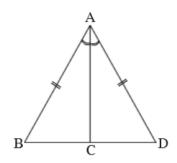

अतः R.H.S. सर्वांगसमता से, ∆ABC≅∆DEF


प्रश्नावली 8.2

नीचे दो त्रिभुजों ABC और DEF के कुछ माप दिए गए हैं। मापों के आधार पर बताइए कि दोनों त्रिभुज सर्वांगसम है या नहीं। यदि सर्वांगसम है, तो सर्वांगसमता का नियम भी लिखिए? एक उदाहरण हल करके दिया गया है, उसके अनुसार शेष प्रश्नों को हल करें।

क्र.	त्रिभुजों	त्रिभुजों की माप			
1.	AB=7 सेमी, BC=5 सेमी CA=9 सेमी	DE=7 सेमी, EF=5 सेमी FD=9 सेमी	हां	મુ.મુ.મુ.	
2.	BC=3.5 सेमी, CA=6.2 सेमी ∠C=47°	EF=3.5 सेमी FD=6.2 सेमी ∠F=45°			
3.	∠B=90°, BA=5 सेमी, AC=13 सेमी	∠E=90°, ED=5 सेमी, DF=13 सेमी			
4.	AB=7.1 सेमी, ∠A=30°, ∠B=43°	DE=7.1 सेमी ∠D=30°, ∠E=43°			
5.	∠C=110°, ∠B=30° BC=5.5 सेमी	∠F=30°, ∠E=110° EF=5.5 सेमी			
6.	CB=8 सेमी, ∠C=90°, AB=10 सेमी	FE= 8 सेमी, ∠E=90°, DF=10 सेमी			
7.	AB=6 सेमी, BC=8.2 सेमी CA=7.8 सेमी	DF=6 सेमी, EF=8.2 सेमी ED=7.8 सेमी			

प्र.2 दिए गए आकृतियों में दोनों त्रिभुजों के सर्वांगसमता की जाँच कीजिए। सर्वांगसमता नियम का उल्लेख भी कीजिए-

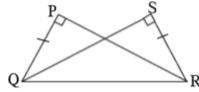


आकृति–1

आकृति–2

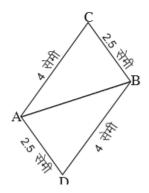
यदि दी गई आकृति में AB=AD, $\angle BAC=\angle DAC$ तो क्या $\triangle ABC\cong\triangle ADC$? यदि हां तो Я.3

क्यों?



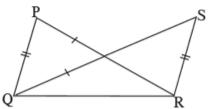
प्र.4 $\triangle PQR$ एक समद्विबाहु त्रिभुज है जिसमें PQ=PR यदि PO, $\angle P$ को समद्विभाजित करता है और आधार QR से बिन्दु O पर मिलता है, तो कौनसा कथन सत्य है और कौनसा कथन असत्य-

- i) ΔPOQ≅ΔPOR
- ii) ΔPQR≅ΔPQO
- iii) ΔPRQ≅ΔPRO



प्र.5 दी गई आकृति में $\angle P = \angle S = 90^\circ$ तथा PQ = SR तो क्या $\triangle PQR$ और $\triangle SQR$ सर्वांगसम हैं? कारण भी लिखिए।

प्र.6 दिये गये दो त्रिभुजों में कौनसी संगतता में सर्वांगसम हैं?


- i) $\triangle ABC \cong \triangle ABD$
- ii) $\Delta ABC \cong \Delta BAD$
- iii) $\triangle ABC \cong \triangle DBA$
- iv) $\triangle ABC \cong \triangle DAB$

प्र7 दिये गये क्व्फत् $\triangle PQR$ तथा $\triangle SRQ$ में यदि PR=SQ एवं PQ=SR है, तो उचित संगतता

के साथ दिखाइये कि ये त्रिभुज सर्वांगसम हैं।

हमने सीखा

1. नियत लम्बाई के दो रेखा खण्ड एक-दूसरे को पूरी तरह ढंक लेते हैं इसलिए सर्वांगसम होते हैं।

2. समान माप और आकार की दो आकृतियां सर्वागसम होती हैं।

3. दो त्रिभुज सर्वांगसम होते हैं यदि एक त्रिभुज के तीनों भुजाएं एवं तीनों कोण दूसरे त्रिभुज के तीनों संगत भुजाएं एवं तीनों संगत कोणों के बराबर हों।

4. दो सर्वांगसम त्रिभुजों में एक त्रिभुज की तीनों भुजाएं एवं तीनों कोण दूसरे त्रिभुज के संगत भुजाओं

एवं कोणों के तुल्य होते हैं।

5. किसी त्रिभुज की दो भुजाओं और उनके बीच का कोण यदि दूसरे त्रिभुज की संगत दो भुजाओं और उनके बीच बने कोण के समान हों तो त्रिभुज सर्वांगसम होते हैं। इसे भुजा कोण भुजा (SAS) सर्वांगसमता कहते हैं।

6. किसी त्रिभुज के तीनों भुजाएं दूसरे त्रिभुज के संगत तीनों भुजाओं के बराबर हों तो त्रिभुज सर्वांगसम होते हैं। इसे भुजा भुजा भुजा (SSS) सर्वांगसमता कहते हैं।

7. किसी त्रिभुज के दो कोण और एक भुजा दुसरे त्रिभुज के संगत दो कोणों और भुजाओं के अलग-अलग बराबर हो तो त्रिभुज सर्वांगसम होते हैं। इसे कोण-भुजा-कोण (ASA) सर्वांगसमता कहते हैं।

8. किसी समकोण त्रिभुज का कर्ण व एक भुजा, दूसरे समकोण त्रिभुज के कर्ण व एक भुजा के अलग-अलग बराबर हो तो दोनों त्रिभुज सर्वांगसम होते हैं। इसे समकोण कर्ण भुजा (R.H.S.) सर्वांगसमता कहते हैं।

अध्याय नौ

बीजीय व्यंजकों पर संक्रियाएँ

(Operation On Algebric Expression)

अंकिता के पास खिलौनों की 3 पेटियाँ हैं, प्रत्येक पेटी में समान संख्या में खिलौने हैं। तब खिलौनों की संख्या कितनी होगी?

चित्र-9.1

यदि प्रत्येक पेटी में 5 खिलौने हैं तो कुल खिलौनों की संख्या = 3 × 5 इस प्रकार यदि प्रत्येक पेटी में 9 खिलौने हैं तो कुल खिलौनों की संख्या = 3 × 9 यदि प्रत्येक पेटी में ग खिलौने हैं तो कुल खिलौनों की संख्या = 3 × X एक पेटी में खिलौनों की संख्या x होने पर 3 पेटियों में खिलौनों की संख्या 3x हो रही है। उसी प्रकार, एक पेटी में खिलौनों की संख्या P होने पर 7 पेटी में खिलौनों की संख्या 7P होगी। इसी प्रकार, एक पेटी में खिलौने की संख्या z होने पर 11 पेटी में खिलौनों की संख्या

होगी?

एक पेटी में खिलौने की संख्या S होने पर 21 पेटी में खिलौने की संख्या होगी? एक पेटी में खिलौने की संख्या x होने पर y पेटी में खिलौनों की संख्या होगी? आइए चरांकों का कुछ और उपयोग देखे-

बीजीय व्यंजकों का जोड़ना एवं घटाना

राधा के पास श्याम से दुगुनी पुस्तकें हैं एवं तिगुनी कॉपियां हैं तो उन दोनों के पास कुल पुस्तकों एवं कॉपियों की संख्या क्या होगी?

यदि श्याम के पास पुस्तक की संख्या x एवं कॉपी की संख्या y है तो श्याम के पास कुल पुस्तकों एवं कॉपियों की संख्या x + y होगी। राधा के पास श्याम से दुगुनी पुस्तकें हैं अर्थात् राधा के पास पुस्तकों की संख्या 2x होगी और श्याम से तिगुनी कॉपियाँ हैं तो राधा के पास 3y कॉपियाँ होंगी। राधा के पास कुल पुस्तकों एवं कॉपियों की संख्या 2x + 3y होगी।

दोनों के पास मिलांकर किताबों व कॉपियों की संख्या = र्थाम के पास पुस्तकों एवं कॉपियों की संख्या \$ राधा के पास पुस्तकों एवं कॉपियों की संख्या।

$$= (x + y) + (2x + 3y) = 3x + 4y$$

यहाँ यह स्पष्ट है कि दो बीजीय व्यंजकों के योगफल में सजातीय चरांकों (किताब से किताब एवं कॉपियों से कॉपियाँ) के गुणांक आपस में जुड़ जाते हैं। इसी प्रकार घटाने में भी सजातीय चरांकों के गुणांक घट जाते हैं।

उदाहरण 1 5x + 6y में 3x + 2y जोड़िए।

हल: (5x + 6y) + (3x + 2y) यहां सजातीय राशियां 5x एवं 3x तथा 6y एवं 2y हैं। सजातीय चरांकों के गुणांकों को जोड़ने पर

$$5x + 3x = 8x$$
 एवं $6y + 2y = 8y$

या 5x + 6y + 3x + 2y = (5x + 3x) + (6y + 2y) = 8x + 8y (यह क्षैतिज विधि है।) इसे निम्न प्रकार से भी हल किया जा सकता है।

5x + 6y

(जोड़ने वाले व्यंजक को इस प्रकार नीचे रखते हैं कि

3x + 2y

सजातीय चरांक एक दूसरे के नीचे हों।)

8x + 8y

(यह स्तम्भ विधि है।)

उदाहरण 2. 5xy + 3z में 8z + 7xy को जोड़िए।

हलः = (5xy + 3z) + (8z + 7xy)

=5xy+7xy+3z+8z

= 12xy + 11z

द्वितीय विधि (यह स्तम्भ विधि)

$$5xy + 3z$$

$$7xy + 8z$$

12xy + 11z

उदाहरण 3. $13xy - 8z^2$ में से $5z^2 - 7xy$ को घटाइए।

हलः
$$13xy - 8z^2 - (5z^2 - 7xy)$$

$$= 13xy - 8z^2 - 5z^2 + 7xy$$

$$= 13 xy + 7 xy - 8z^2 - 5z^2$$

$$= 20 xy - 13z^2$$

या $13 xy - 8z^2$

$$7 xy \pm 5z^2$$
—(चिह्न बदलने पर)
 $20 xy - 13 z^2$

उदाहरण 4. $3x^2y + 8 + 3y + 3x + 7 - 8xy$ को घटाइए।

हलः
$$= 3x^2y + 8 + 3y - (3x + 7 - 8xy)$$

$$= 3x^2y + 8 + 3y - 3x - 7 + 8xy$$

$$= 3x^2y + 1 + 3y - 3x + 8xy$$

$$= 3x^2y + 1 + 3y - 3x + 8xy$$

टीप— 1) ऋणात्मक पूर्णांकों से गुणा करते समय कोष्ठक खोलने पर धनात्मक पूर्णांक ऋणात्मक एवं ऋणात्मक पूर्णांक धनात्मक पूर्णांकों में बदल जाते हैं।

> 2) कोष्ठक के सामने ऋण चिन्ह (–) की उपस्थिति का अर्थ (–1) से गुणा होता है।

अथवा
$$3x^2y + 3y + 8$$

 $(-)$ $\pm 7 \pm 3x + 8xy$
 $3x^2y + 3y + 1 - 3x + 8xy$ (चिह्न बदलने पर)

दोनों व्यंजकों में सजातीय पद न होने पर संक्रिया के बाद पदों की संख्या बढ़ जाती है।

प्रश्रावली 9.1

प्रश्न (1) निम्नलिखित का योग ज्ञात कीजिए।

- a) 2pq और 7pq
- b) 2xy 4xy और 8xy
- c) 3x + 4y और 7x + 6y
- d) 7y + 3z और 3x + 4y
- e) x + y z, x y z और y + z x
- f) 5x + 4y 12, 6x + 5y और 12z 7x + 9y
- g) 3x 7xy, 6xy 4y और x + 2
- h) $x^2y^2 + 3x^2 7, -5x^2y^2 5x + 7$

प्रश्न (2) निम्नलिखित में प्रथम व्यंजक से द्वितीय व्यंजक को घटाइए।

- a) 8x में से 3x को े
- b) 12x में से -4x को
- c) -9x में से x को
- d) −5x में से −8x को
- e) $x^2 3x + 7 + 4 + 3x^2 4x 2$ of
- f) x-3y में से 5y-x-3z को
- g) xy 5a 9b में से 3ab + 2a 3b को

प्रश्न (3) सरल कीजिए

- 1. $5ab 7b^2c 6ab + 2bc^2 4b^2c 3bc^2$
- 2. $m^2 2n^2 + 7mn 5m^2 11mn 3n^2 + 2n^2$

प्रश्न (4) शशांक ने पुस्तक मेले में 4 रूपये की दर से x पुस्तकें, 5 रूपये की दर से y पुस्तकें और पुनः x रूपये की दर से 7 पुस्तकें तथा y रूपये की दर से 8 पुस्तकें खरीदी हैं तो उसने कुल कितने रूपये खर्च किये?

प्रश्न (5) एक त्रिभुज की भुजाओं की लंबाई क्रमशः $4x^2+x-1,2x^2-3x+5$ एवं $-x^2+4x+1$ हो तो त्रिभुज का परिमाप ज्ञात कीजिए।

बीजीय व्यंजकों का गुणन

राधा के पास m खिलौनों की पेटियाँ है एवं प्रत्येक में n खिलौने है तब खिलौनें की संख्या क्या होगी?

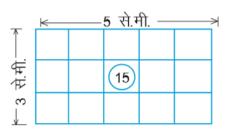
 $= n + n + n + \dots + n \text{ (m } \overline{\text{alt}})$

= n × (कुल पेटियों की संख्या)

 $= n \times m$

= mn

यहाँ खिलौनों की संख्या = m n = mn


पुनः विचार कीजिए यदि एक आयत की लंबाई 5 से.मी. एवं चौड़ाई 3 से.मी. हो तब उसका क्षेत्रफल कितना होगा ?

क्षेत्रफल = लं. × चौ.

= 5 × 3

क्षेत्रफलत्र 15 से.मी.2

अब यदि आयत की लम्बाई 8 सेमी और चौड़ाई 3 सेमी है तो क्षेत्रफल क्या होगा? उसी प्रकार यदि आयत की लम्बाई ग सेमी और चौड़ाई 3 सेमी है तो क्षेत्रफल क्या होगा?

उदाहरण 5. यदि किसी आयत की लम्बाई p सेमी तथा चौड़ाई q सेमी हो तो उसका क्षेत्रफल क्या होगा?

हलः आयत का क्षेत्रफल त्र लंबाई × चौड़ाई

= p से.मी. x q से.मी.

= pq से.मी²

यहाँ उपयोग किए गए सभी चरांकों का कोई न कोई संख्यात्मक मान है इसलिए ये उन सभी नियमों का पालन करेंगी जो संख्याएं करती हैं। ऐसे ही कुछ नियमों जैसे संवरकता, क्रम विनिमेय एवं साहचर्य नियम के बारे में आपने पहले पढ़ा है।

आइए, बीजीय व्यंजक इन नियमों का पालन कैसे करती हैं देखें।

क्रियाकलाप-1

नीचे दिए गए तालिका में दो बीजीय व्यंजक तथा उनका गुणनफल दिया गया है और कुछ स्थान खाली है। खाली स्थानों में आप प्रथम एवं द्वितीय व्यंजक के स्थान पर कोई भी बीजीय व्यंजक लिखकर ऊपर दिये गये उदाहरणांे के अनुसार उनका गुणा कीजिए-

क्र.सं.	प्रथम व्यंजक	द्वितीय व्यंजक	प्रथम व्यंजक × द्वितीय व्यंजक	द्वितीय व्यंजक × प्रथम व्यंजक	गुणनफल
1	-3	a	$-3 \times a$	$a \times (-3)$	−3a
2	\boldsymbol{x}	5	$x \times 5$	$5 \times x$	5 <i>x</i>
3	2a	5a	2a×5a=2x5xaxa	$5a \times 2a = 5x2xaxa$	$10a^2$
4					
5					
6					

क्या पदों का स्थान बदलने से गुणनफल बदल रहा है?

इस तालिका से बीजीय व्यंजकों के गुणा सम्बन्धी क्या निष्कर्ष प्राप्त होते हैं ? लिखिए-

जब किन्हीं दो बीजीय ब्यंजकों को आपस में गुणा किया जाता है तब पूर्णांकों का पूर्णांकों के साथ एवं चरांको का चरांकों के साथ गुणा होता है। तालिका से यह भी स्पष्ट है कि बीजीय व्यंजक गुणा के लिए क्रम विनिमय नियम का पालन करते हैं।

आइए, अब कुछ समस्याओं पर विचार करें -

प्रश्न रजनी के पास x मीटर लम्बी 3 डोरियाँ हैं। यदि वह प्रत्येक डोरी में 4 मीटर लम्बी डोरियां जोड़ देती है तब डोरियों की कुल लम्बाई क्या होगी ?

हलः x मीटर लम्बी डोरी में 4 मीटर लम्बी डोरी जोड़ने पर प्रत्येक डोरी की लम्बाई =(x+4) मीटर हो जाएगी।

तीनों डोरियों की सम्मिलित लम्बाई (x + 4) . 3मीटर या 3. (x + 4) मीटर

इस प्रश्न पर इस प्रकार भी विचार कर सकते हैं-

तीनों डोरियों की लम्बाइयों का योग = x + x + x = 3x मीटर

बढ़ी हुई लम्बाई = 4 3 = 12 मीटर

अतः लम्बाई बढ़ने के बाद सिम्मिलित लम्बाई = 3x + 12

दोनों स्थितियों में कुल लम्बाई समान होगी।

अर्थात 3
$$(x + 4) = 3x + 12$$

या
$$(x + 4)$$
 3 = x .3 + 4 3 = $3x$ + 12

अब पुनः सोचें कि यदि इस प्रकार x लम्बाई की 5 डोरियां हैं एवं प्रत्येक डोरी में y लम्बाई की डोरी जोड़ दिया जाए तब डोरियों की कुल लम्बाई क्या होगी?

x लम्बाई की डोरी में ल लम्बाई की डोरी को जोड़ने पर प्रत्येक डोरी की लम्बाईत्रग़ल अब सभी डोरियों की कुल लम्बाई = (x + y).5 (चूंकि ऐसी डोरियाँ 5 है)

$$=5(x+y)$$

$$= 5x + 5y$$

पुनः विचार करें y लम्बाई की 5 डोरियों की कुल लंबाई = x 5 = x.5 प्रत्येक डोरी में y लम्बाई की डोरी जोड़नी है अतः 5 डोरियों की लम्बाई में कुल वृद्धि = y 5 = y.5, qद्धि के बाद कुल लम्बाई x.5 + y.5

किन्तु दोनों स्थितियों में कुल लम्बाई समान होगी, अर्थात
$$(x + y).5 = x.5 + y.5 = 5x + 5y$$

उदाहरण 5. व्यंजकों . -5aएवं (6b + 3c) अबद्ध को गुणा कीजिए।

हल:
$$-5a (6b + 3c) = (-5a) (6b) + (-5a) (3c)$$

= $-30 ab - 15 ac$

[a(b+c) = ab + ac द्वारा] ख्वितरण नियम,

उदाहरण 6. (7b – 3c) का 4b में से गुणा कीजिए।

हलः
$$7b - 3c$$
) $(4b) = 7b 4b + (-3c) 4b$
= $28 b^2 - 12 cb$
= $28 b^2 - 12 bc$

[(a + b) c = ac + bc द्वारा] ख्वितरण नियम,

उदाहरण 7.
$$\left(-5x + \frac{1}{2}y\right)$$
 का 4a में से गुणा कीजिए।

हल: $\left(-5x + \frac{1}{2}y\right)$ × 4a = $(-5x)(4a) + \left(\frac{1}{2}y\right)(4a)$ [(a + b) c = ac + bc द्वारा]

= - 20 $xa + 2ya$
= - 20 $ax + 2ay$

प्रश्नावली 9.2

- 1. रिक्त स्थानों की पूर्ति कीजिए-
 - (i) $(2x + 3y) 2z = 2x 2z + 3y. \dots = 4xz + 6yz$
 - (ii) a (12 x + xy) = a 12x + a xy = + axy

(iii)
$$-x\left(3xy + \frac{1}{2}z\right) = \dots + \dots = 3x^2y - \frac{1}{2}xz$$

(iv)
$$\left(\frac{5}{2}m - 6n\right) \times p^2 = \dots + (-6n) p^2 = \dots + \dots$$

(v)
$$(-3x^2y + 2z) \times y^2 = \dots + \dots = \dots + \dots$$

निम्न प्रश्नों को हल कीजिए -

(i)
$$xy(7+8x)$$
 (ii) $(3r^2-5s) 2t^2$ (iii) $\frac{1}{2}m\left(m^3+\frac{3}{2}n\right)$

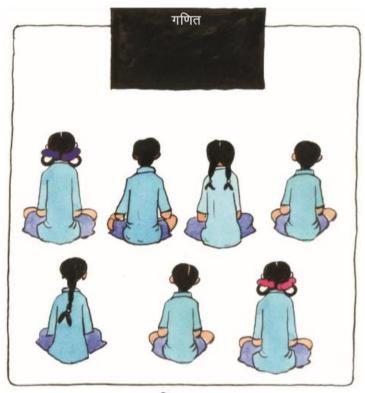
(iv) mst (
$$r^3 - st$$
) (v) $\frac{4}{3}a\left(2b^2 + \frac{1}{2}c\right)$

हमने सीखा

- बीजीय व्यंजक के सजातीय पदों का समूह बनाकर जोड़ने या घटाने की प्रक्रिया करते हैं। बीजीय व्यंजकों के घटाने की प्रक्रिया में घटने वाले पदों का चिह्न परिवर्तित करके उन्हें 1.
- 2. जोड़ा जाता है।
- बीजीय व्यंजकों का गुणा करने के लिए पहले उनके पूर्णांकों का आपस में गुणा एवं फिर चरांकों का आपस में गुणा करते हैं। 3.

अध्याय दस

आरेख (Graph)

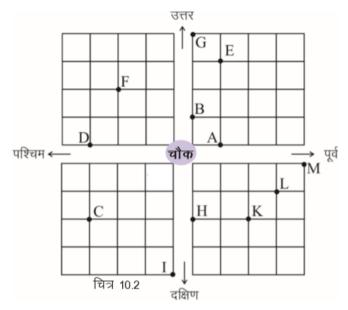

एक दिन सुरेश ने अध्यापक से शिकायत की कि उसके स्थान पर लिली बैठ गई है। अध्यापक ने सुरेश से पूछा तुम्हारा स्थान कहाँ था?

सुरेश - इस पंक्ति की पहले स्थान पर। अध्यापक - लिली तुम्हारी जगह कौन-सी है?

लिली - चौथी पॅक्ति में प्रारंभ से दुसरी स्थान पर।

लिली और सुरेश को अपने निर्धारित स्थान पर बैठने को कहते हुए अध्यापक ने मोहन से पूछा- मोहन तुम अपनी जगह कैसे पहचानते हो।

मोहन - मेरी जगह पांचवी लाइन में प्रारंभ से चौथे स्थान पर है।

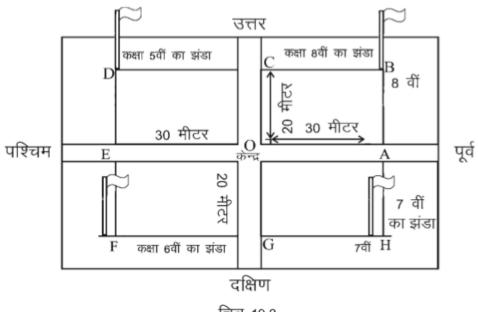

चित्र 10.1

अध्यापक ने हमीद, संध्या और अकबर से भी कक्षा में उनके बैठने की स्थिति पूछा-अध्यापक ने कहा- आप सब जहाँ बैठते हैं उसकी स्थिति निश्चित है, आइये ऐसी ही स्थिति का पता लगाने संबंधी खेल खेलें-

क्रियाकलाप-1

नीचे शहर की कालोनी का चित्र है आपको चौक से मकानों तक पहुँचना है शर्त है-आपको रेखा पर चलना है। सबसे कम दूरी का रास्ता चुनना है। बिना मुड़े या केवल एक बार मुड़ना है।

- 1.
- 2.
- 3.



चित्र में दर्शाये गये स्थानों पर पहुँचने के लिए नीचे गए उदाहरण अनुसार रास्ते का चयन कीजिए-सारणी 1

क्र.	मकान का संकेत	चौक से मकान तक पहुँचने की विधि	पार किए गए कुल खाने
1.	A	O से पूर्व की ओर एक खाना	1
2.	В	O से उत्तर की ओर एक खाना	1
3.	С	O से पश्चिम की ओर 3 खाने फिर दक्षिण की ओर 2 खाने अथवा O से दक्षिण की ओर 2 खाने फिर पश्चिम की ओर 3 खाने	5
4.	D		
5.	E		
6.	F		
7.	G		

युग्म द्वारा स्थिति दर्शाना -

विद्यालय में वार्षिक खेलकूद प्रतियोगिता के अवसर पर विद्यालय को चार भागों में बांटा गया, चारांे कोनांे पर झंडे लगाये गए। विद्यालय की कक्षा 5 वीं, 6 वीं, 7 वीं, 8 वीं के छात्रों के द्वारा लगाए गए झंडे तक सीधे न जाकर पर्व. पश्चिमी. उत्तर. दक्षिण के रास्ते पर चलकर पहँचना है।

चित्र 10.3

कक्षा आठवी के मोहन और लिली दो अलग रास्तों से झंडे तक पहुँचे मोहन पूर्व में 30 मीटर तक गया वहाँ से उत्तर की ओर 20 मीटर जाकर B झंडे तक पहुँचा।

लिली पहले उत्तर दिशा में 20 मीटर जाकर C तक पहुंची वहाँ से 30 मीटर पूर्व चलकर झंडे B तक पहुंची। केन्द्र से झंडे की स्थिति कुछ इस प्रकार है-

दिशा	दूरी
पूर्व	30 मीटर
उत्तर	20 मीटर

B की स्थिति (30 मीटर, 20 मीटर) → (पूर्व की ओर दूरी, उत्तर की ओर दूरी)

संक्षेप में (30, 20) → (पूर्व, उत्तर) से

इसी प्रकार अन्य बिन्दु की स्थिति को आप स्वयं लिखिए।

स्थिति निरूपण और संख्या रेखाएँ-

कक्षा 6 वीं एवं 7 वीं में आपने संख्या रेखा प्रयोग करना जाना है। आइए मैदान या कालोनी के चित्र में पूर्व-पश्चिम में (आड़ी) एक संख्या रेखा तथा उत्तर दक्षिण में खड़ी एक संख्या रेखा बनाये दोनों संख्या रेखा का कटान बिन्दु मूल बिन्दु 0 ले तो.

क्षैतिज संख्या रेखा पर O के दांयी ओर पूर्व को धनात्मक (+) दिशा तथा O के बांयी ओर पश्चिम को ऋणात्मक (-)

उर्ध्वाधर (उत्तर-दक्षिण) संख्या रेखा पर 0 के ऊपर उत्तर को धनात्मक (+) तथा व् के नीचे दक्षिण को ऋणात्मक

दिशा (-) लेते है।

इस तरह संख्या युग्म द्वारा स्थिति निरूपण है-

8 वीं झंडा (30, 20)

5 वीं का झंडा (-30, 20)

6 वीं का झंडा (-30, -20)

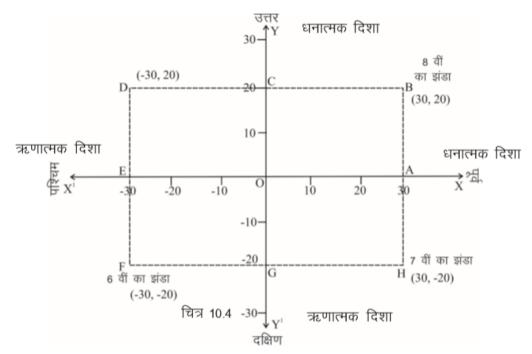
7 वीं का झंडा (30, -20)

क्या केन्द्र की स्थिति को (O,O)होगी?

इस तरह किसी भी बिन्दु की स्थिति को संख्या युग्म द्वारा दर्शाया जाता हैं।

नेर्देशांक्ष और तल

निर्देशांक्ष और तल


ऊपर बताये गये दोनों संख्या रेखाओं को निर्देश अक्ष कहते हैं।

क्षैतिज निर्देश अक्ष- (जिसे आड़ी सरल रेखा से दर्शाया गया है) को XX' तथा उर्ध्वधर (खड़ी) निर्देश अक्ष को ल्ल्श् से दर्शाते हैं।

कागज के तल को **निर्देश तल** कहते हैं। इस पद्धति का प्रयोग सर्वप्रथम गणितज्ञ रेने डी कार्त ने किया।

उनके याद में निर्देश तल कार्तीय तल कहलाता है।

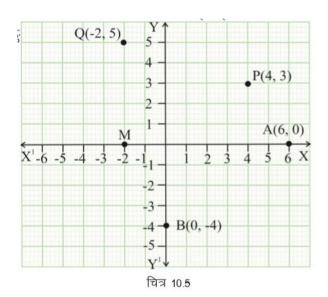
निर्देश अंक- 8 वीं के झंडे की स्थिति (30, 20) में प्रथम निर्देश अंक 30 को ग् निर्देशांक कहते हैं। क्योंकि यह XX' अक्ष की दिशा में बताया गया अंक है। द्वितीय निर्देश अंक 20 को y निर्देशांक कहते हैं क्योंकि यह (Y,Y) अक्ष की दिशा में बताया गया अंक है।

निर्देशाक्षों पर बिन्दु की स्थिति

- 1. **XX'** अक्ष पर स्थित बिन्दु की स्थिति बिन्दु A, XX' अक्ष पर मूलबिन्दु से 30 इकाई की दूरी पर है A तक पहुँचने के लिए हमें उर्ध्वाधर दिशा में कितना चलना पड़ेगा। स्पष्ट रूप से यह दूरी शून्य होगी, अतः
- A बिन्दु की स्थिति (30, 0) होगी।

इसी प्रकार E बिन्दु की स्थिति बताइए?

'XX' अक्ष पर स्थित प्रत्येक बिन्दु के लिए Y निर्देशांक शून्य होगी।"


क्या YYअक्ष पर C (0, 20), G(0,20) से दर्शाया जाएगा।
 हम YY अक्ष पर बिन्दुओं को (0, 3), (0, 12), (0, -4)...... (0, □ से दर्शा सकते हैं।
 मूल बिन्दु का निर्देशांक (0,0) है यह कार्तीय तल का केन्द्र है।

तल में बिन्दु की स्थिति दर्शाना

- 1. बिन्दु P(4,3) के लिए 0 से XX' अक्ष की धनात्मक दिशा में 4 इकाई चलकर ON=4 बिन्दु N पर पहुंचे तथा N से YY अक्ष की धनात्मक दिशा में 3 इकाई (NP=3) जाने पर वह बिन्दु P(4,3) की स्थिति है[N] का निर्देशांक =(4,0)],
- 2. बिन्दु Q(-2,5) के लिए XX अक्ष की ऋणात्मक दिशा में 2 इकाई दूरी पर M से YY' अक्ष की धनात्मक दिशा में 5 इकाई चलकर बिन्दु Q(-2,5) तक पहुंचे।

(M का निर्देशांक (-2,0))

- 3. बिन्दु A (6,0) के लिए XX' अक्ष की धनात्मक दिशा में 6 इकाई और वहाँ से YY 'अक्ष की दिशा में शून्य इकाई चलना है तो बिन्दु A , XX' अक्ष पर है।
- 4. बिन्दु B (0,-4) के लिए मूल बिन्दु O से XX' अक्ष की दिशा में 0 इकाई चलना अर्थात् व् पर रहते हुए YY ' अक्ष की ऋणात्मक दिशा में 4 इकाई चलकर ल्ल्शु अक्ष पर ही बिन्दु B(0, -4 प्राप्त हुआ।

क्रियाकलाप-2

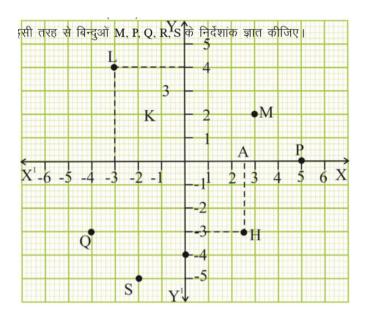
कार्तीय तल पर निम्न बिन्दु अंकित करें-

(i) (3, 2) (ii) (3, -4) (iii) (-1, 5) (iv) (4, 4) (v) (0, 0)

(vi) (0, -2) (vii) (4, 0) (viii) (-3, -5)

कार्तीय तल में निरूपित बिन्दु के निर्देशांक ज्ञात करना

(1) ग्राफ में बिन्दु H निर्देशांक प्राप्त करने के लिए H तक पहुँचने के लिए XX' अक्ष की दिशा में चली गई दूरी तथा YY अक्ष की दिशा में चली दूरी प्राप्त करनी होगी। इस तरह-


H का X निर्देशांक = 2ण्5

H का Y निर्देशांक = .3

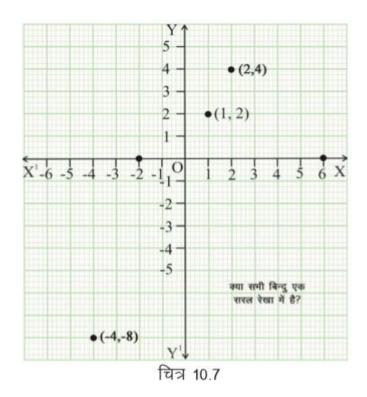
अतः भ् के निर्देशांक (2.5, -3) हुए।

- (2) बिन्दु K, YY' अक्ष पर है अतः XX अक्ष की दिशा में दूरी = 0 तथा YY अक्ष की दिशा में दूरी = 2 अतः K(0, 2) है।
- (3) बिन्दु L तक पहुँचने के लिए XX अक्ष पर दूरी -3 तथा YY' अक्ष पर दूरी 4 है, अतः बिन्दु स् के निर्देशांक अंक (-3, 4) है।

इसी तरह से बिन्दुओं M, P, Q, R, S के निर्देशांक ज्ञात कीजिए।

संख्या एवं उसके गुणज के मध्य आरेख

पिछली कक्षाओं में आपने गुणज के विषय में पढ़ा है। मान लिजिए कोई संख्या 3 है तो उसके गुणज 6, 9, 12, 15, 18, आदि होगें। इसी प्रकार यदि संख्या X है तो उसके गुणज 2x, 3x, 4x होगे। इन संख्याओं को आरेख में प्रदर्शित करने के लिए दी गई संख्या को प्रायः XX अक्ष में एवं उसके गुणज को YY' अक्ष में दर्शाते हैं।


उदाहरण: Y = 2 x

चूंकि X यहाँ Y के दो गुणा के बराबर है। X के सभी मानो को XX^{3} अक्ष पर एवं उसके गुणज 2x को YY' अक्ष पर दर्शाते है। अतः बिन्दु (X,Y) के लिए उनके निर्देशांक निम्न होंगे।

क्रियाकलाप-3

रिक्त स्थानों की पूर्ति कर आरेख में बिन्दुओं को मिलाये-सारणी 2

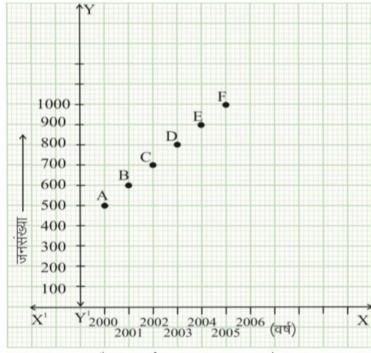
क्रं. सं.	पहली संख्या	दूसरी संख्या	बिन्दु (X , Y)
	(X)	(Y=2X)	
1	1	2	(1, 2)
2	2	4	(2, 4)
3	3		
4.	0		
5.	-1		
6.	-4	-8	
7.			

पैमाना (मापनी)

यदि निर्देशांक में प्राप्त अंक ज्यादा बड़ा हो, जिन्हें ग्राफ पेपर में दर्शाया जाना संभव न हो तो ग्राफ खींचते समय उचित पैमाना मानकर निर्देशांकों को दर्शाया जा सकता है।

इसी प्रकार निर्देशांक बहुत छोटे होने पर उचित पैमाना मानकर निर्देशांकों को दर्शाया जा सकता

है। उदाहरण - किसी गांव की विभिन्न वर्षों की जनसंख्या निम्नानुसार दी गई है।


वर्ष х	2000	2001	2002	2003	2004	2005
जनसंख्या y	500	670	720	860	940	1000

उपरोक्त आकड़े में से वर्ष को X अक्ष पर एवं जनसंख्या को Y अक्ष पर लेकर आलेख बनाया गया है। जनसंख्या में प्राप्त आंकड़े 500 एवं 1000 है अतः उचित पैमाना मानकर ग्राफ पेपर में आलेखित किया गया है क्योंकि इतने बड़े आंकड़ों को ग्राफ पेपर पर दर्शाया जाना संभव नहीं है।

पैमाना xxअक्ष पर 10 छोटे खाने = 1 वर्ष

YYअक्ष पर 10 छोटे खाने = 100 (जनसंख्या)

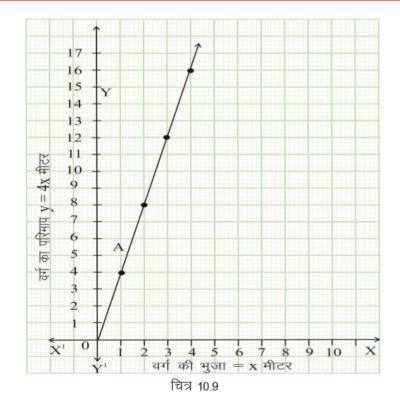
अतः 500 की जनसंख्या के लिए 50 छोटे खाने या 5 बडे खाने लेने हींगे।

गाँव का वर्षवार जनसंख्या का आरेख चित्र 10.8

वर्ग की भुजा एवं परिमाप के मध्य आरेख

पिछली कक्षाओं में आपने वर्ग की भुजा ज्ञात होने पर परिमाप (4 x भुजा) निकालना सीख लिया है। जैसे-

यदि वर्ग की भुजा 5 सेमी हो तो परिमाप 4 x 5 = 20 सेमी होगा। इसी प्रकार यदि वर्ग की भुजा x इकाई हो तो उसका परिमाप 4x इकाई होगा।


आइये इससे संबंधित क्रियाकलाप करे।

क्रियाकलाप ४

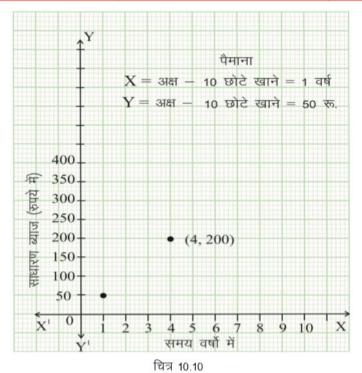
निम्न सारणी को पूर्ण करते हुए आरेख खींचिए।

सारणी 3

क्र.सं.	वर्ग की भुजा की	वर्ग का परिमाप	बिन्दु
	लम्बाई x	y = 4x	
1.	1	4	(1, 4)
2.	2		
3.	3		
4.			(4, 16)
5.			
6.			

समय तथा साधारण ब्याज के मध्य आरेख

साधारण ब्याज त्र मूलधन x दर x समय


जब मूलधन और दर नियत हो तो साधारण ब्याज = नियतांक x समय साधारण ब्याज = K x समय अर्थात् यदि मूलधन तथा दर को नियत रखते है तो साधारण ब्याज समय के अनुक्रमानुपाती होती

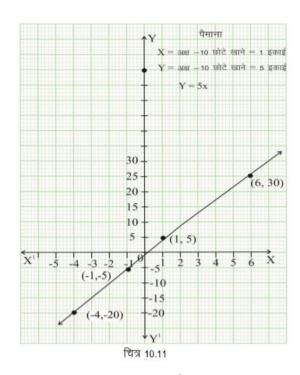
है।

क्रियाकलाप 5

सारणी को पूर्ण करके आलेख खींचिए जबकि मूलधन 1000 रू. तथा दर 5% वार्षिक हो। सारणी 4

क्र.सं.	समय (वर्षों में)	सा.ब्याज = $\frac{1000 \text{ x5x}}{100}$ समय	बिन्दु (x,y)
1.	1		(1, 50)
2.	2	100	
3.	3		
4.			(4,200)
5.			

आरेख को पढ़ना(Readings Of Graph)


रैखिक आरेख

अब तक हमने संख्याओं के गुणन, वर्ग की भुजा एवं परिमाप तथा क्षेत्रफल और समय तथा साधारण ब्याज

के मध्य आरेख खींचा है। अब हम दिये गये आरेख को पढ़ना सीखेंगे।

क्रियाकलाप ६

दिये गये आरेख (ग्राफ) पर ध्यान दीजिए।

उपरोक्त आलेख में सरल रेखा में आये हुए बिन्दुओं को लिखिए।

सारणी 5

क्र.सं.	बिन्दु	x का मान	y का मान
1.	(-4, -20)	-4	-20
2.	(-1, -5)		
3.	(1, 5)		
4.			

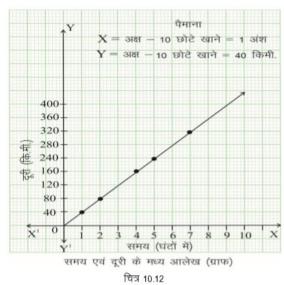
उपरोक्त सारणी में (1) y का प्रत्येक मान x अक्ष के संगत मान से कितना गुना है? y तथा x के मध्य संबंध बताइये?

सारणी से ज्ञात होता है कि y का प्रत्येक मान x के संगत मान से पांच गुना है इस प्रकार y तथा x के मध्य संबंध y = 5x है। आलेख में हम देखते हैं कि x का मान बढ़ाने पर y का मान बढ़ जाता है एवं इसके

विपरित x के मान को घटाने पर y का मान घटता जाता है। अर्थात् x, y के अनुक्रमानुपाती है। अतः कोई भी दो-चर आपस में अनुक्रमानुपाती हो तो उनके मध्य प्राप्त आरेख सरल रेखा में होता है। समय एवं दूरी के मध्य आरेख:-

पिछली कक्षाओं में आप पढ़ चुके हैं कि चाल त्र दूरी/समय

चाल x समय = दूरी


यदि चाल को नियत रखा जाये तो दूरी समय के अनुक्रमानुपाती होती है अर्थात्

दूरी = नियतांक x समय

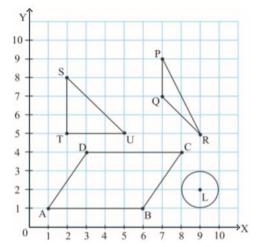
. अब यदि समय को x अक्ष पर तथा दूरी को y अक्ष पर लेते हैं तो उनके मध्य भी सरल रेखा प्राप्त होती है।

क्रियाकलाप 7

एक मोटरसाइकिल चालक नियत चाल से चल रहा है। आरेख में उसके द्वारा विभिन्न समयों के संगत तय की गयी दूरी प्रदर्शित की गई है। निम्न आरेख से दिये गये सारणी में रिक्त स्थानों की पूर्ति कर चाल ज्ञात कीजिए।

सारणी 6

क्र.सं.	बिन्दु	x अक्ष का निर्देशांक	y अक्ष का मान निर्देशांक	चाल = $\frac{d \ell \ell}{t \text{ticn}}$
1.	(2, 80)	2	80	
2.	(4, 160)			
3.				
4.				
5.				
6.				


सारणी से ज्ञात होता है कि मोटरसाइकिल चालक की चाल ----- है।

प्रश्रावली 10

- प्रश्न 1 निम्न बिन्दुओं को ग्राफ में प्रदर्शित कीजिए। (2,5), (-3,4), (1,-1), (-3,-2), (0, 6) (-3, 0), (0,-4)
- प्रश्न 2 बताइये निम्न बिन्दुएं किस चतुर्थांश हैं। (2,-2), (-4, 4), (-5, -4), (2, 0), (5,4), (0,-4), (0, 6)

प्रश्न 3 निम्न बिन्दुओं को ग्राफ में दर्शाकर उन्हें मिलाइये, क्या प्राप्त आकृति सरल रेखा है? (3, -1), (1,1), (5, -3), (6,-4), (-2, 4), (-4, 6), (8,-6)

प्रश्न 4 अपने ग्राफ कॉपी में निम्नांकित चित्रों को बनाकर दिए गए प्रश्नों के उत्तर दीजिए-

- (1) त्रिभुज PQR के शीर्षों के निर्देशांक ज्ञात कीजिए।
- (2) समकोण त्रिभुज STV के शीर्षों के निर्देशांक ज्ञात कर भुजाओं की लंबाई ज्ञात कीजिए।
- (3) समांतर चतुर्भुज ABCD के शीर्षों के निर्देशांक ज्ञात कर भुजा AB एवं DC की लंबाई ज्ञात कीजिए।
- (4) वृत्त के केन्द्र L के निर्देशांक ज्ञात कर वृत्त का व्यास ज्ञात कीजिए।
- प्रश्न 5 संख्या तथा उसके तिगुने का आरेखीय निरूपण कीजिए।

प्रश्न 6 मूलधन 800 रू. का 10% प्रतिवर्ष की दर से विभिन्न वर्षों के संगत साधारण ब्याज प्राप्त कर आरेख खींचिए।

प्रश्न 7 एक रेलगाड़ी 60 किमी प्रति घंटे की नियत चाल से चल रही है। विभिन्न समयों में तय की गई संगत दूरी के मध्य आरेख खींचिए।

हमने सीखा

- 1. किसी भी बिन्दु की स्थिति को संख्या युग्म (निर्देशांक) द्वारा दर्शाया जाता है।
- 2. प्रायः कागज तल को निर्देश तल या कार्तीय तल कहते हैं।
- 3. x अक्ष पर y के निर्देशांक शून्य तथा y अक्ष पर x के निर्देशांक शून्य होते हैं।
- 4. मूल बिन्दु की निर्देशांक (0,0) होता है इसे कार्तीय तल का केन्द्र कहते हैं।
- निर्देशांकों को संख्या रेखा पर चार भागों में बांटा जाता है, प्रत्येक भाग चर्त्थांश कहलाता है।
- 6. यदि दो चरों के मध्य अनुक्रमानुपाती का संबंध हो, तो उनके मध्य आलेख एक सरल रेखा होती है।

अध्याय ग्यारह

परिमेय संख्याओं का दशमलव निरूपण एवं संक्रियाएँ (DECIMAL REPRESENTATION OF **RATIONAL NUMBERS & OPERATION ON IT)**

पिछले अध्याय में हमने देखा कि q के रुप में लिखी जा सकने वाली संख्याएँ जहाँ $q \neq 0$ एवं p, q

पूर्णांक है, परिमेय संख्याएं कहलाती हैं, अर्थात् $\frac{p}{q}$ वह संख्या है जो p को q से विभाजित करने पर प्राप्त होती है।

परिमेय संख्याओं का अध्ययन करते हुए मनोहर के मन में यह विचार उठा कि यदि हम अंश को हर से भाग दें तब क्या होगा?

गरिमेय संख्याओं में भाग क्रिया

आइए, मनोहर के इस प्रश्न पर विचार करें। परिमेय संख्या $\frac{2}{5}$, 2 को 5 से विभाजित करने पर प्राप्त होती

$$\frac{0.4}{5\sqrt{2}}$$
 (2 को 5 से विभाजित करने के लिए हमें दशमलव की आवश्यकता है।)
$$\frac{-0}{20}$$
 अतः , इस प्रकार हम परिमेय संख्या को 0.4 के रूप में
$$\frac{3.25}{4\sqrt{13}}$$
 लिख सकते है।
$$\frac{12}{10}$$
 आइए, देखें को $\frac{13}{4}$ हल करने पर क्या प्राप्त होगा।
$$\frac{13}{4} = 3.25$$
 अतः $\frac{13}{4} = 3.25$

उक्त उदाहरणों में भागफल 0.4 एवं 3.25 क्रमशः परिमेय संख्याओं $\frac{2}{5}$ एवं $\frac{13}{4}$ का दशमलव निरूपण कहलाते हैं।

आगे दिए गए परिमेय संख्याओं का दशमलव निरूपण क्या होगा -

(i)
$$\frac{3}{5}$$
 (ii) $\frac{17}{4}$ (iii) $\frac{15}{6}$ (iv) $\frac{19}{2}$ (v) $\frac{20}{3}$

संख्या 3 पर विचार करें।

अतः
$$\frac{20}{3} = 6.666...$$

सांत तथा असांत दशमलव

प्रारंभ के सभी प्रश्नों में भाग की क्रिया कुछ पदों में पूरी हो जाती है, किन्तु 3 के निरूपण में शेषफल हमेशा 2 बचा रहता है एवं भागफल में अंक 6 बार-बार आता है। इस प्रकार भाग की क्रिया पूरी नहीं होती है। अतः जब भाग की क्रिया कुछ पदों में पूरी हो जाती है तो इस संख्या का दशमलव निरूपण 'सांत' कहलाता है तथा जब भाग की क्रिया पूरी नहीं होती है तो उस संख्या का दशमलव निरूपण 'असांत' कहलाता है।

अब निम्न संख्याओं का दशमलव निरूपण सांत है या असांत ज्ञात कीजिए।

	3		15		1		1		2		2	
(i)	8	(ii)	4	(iii)	6	(iv)	7	(v)	9	(vi)	11	
बाएँ र	खण्ड में	कुछ परि	मेय संख	ष्ट्राओं के	ो सांत	अथवा अ	सांत द	शमलव वे	रुप	में निरूपि	त किया	गया है।
दाएँ र	खण्ड में	दी गयी ऐ	्सी ही	कुछ परि	मेय सं	ख्याओं क	ो आप	भी सांत उ	अथवा	असांत दश	मलव वे	ह रूप में
निर्फ	पित की	त्ताग्र।		•								

(i)
$$\frac{3}{8}$$
 $\frac{0.375}{8)3}$ $\frac{-0}{30}$ $\frac{-24}{60}$ $\frac{-56}{40}$ $\frac{-40}{00}$

आप हल कर बतायें सांत है अथवा असांत $\frac{5}{8}$ 8)5

 $\frac{3}{\text{अतः}} = 0.375 \frac{}{\text{सांत दशमलव है}}$

(ii)
$$\frac{15}{4}$$

4 $\frac{3.75}{)15}$

12

3 0

2 8

2 0

2 0

0 0

 $\frac{13}{4}$ 4)13

अतः , 4 = 3.75 सांत दशमलव है

1/12

12)1

अतः , $\frac{1}{6} = 0.1666...$ असांत दशमलव है

(iv)
$$\frac{1}{7}$$

$$\frac{1}{7}$$

$$\frac{7}{10}$$

$$-7$$

$$\frac{10}{-7}$$

$$\frac{3}{3}$$

$$-2$$

$$8$$

$$\frac{2}{2}$$

$$-1$$

$$\frac{6}{0}$$

$$-5$$

$$\frac{4}{0}$$

$$-3$$

$$-4$$

$$\frac{9}{0}$$

$$-4$$

$$-7$$

$$\frac{3}{0}$$

$$-2$$

$$\frac{1}{14}$$
 14)1

= 0.14285714... , असांत दशमलव है।

$$\frac{4}{9}$$
 9)4

(vi)
$$\frac{2}{11}$$

$$\begin{array}{c}
0.1818 \\
11 \overline{\smash{\big)}\,2} \\
-0 \\
20 \\
-11 \\
\hline
9 0 \\
-8 8 \\
\hline
2 0 \\
-1 1 \\
\hline
9 0 \\
-8 8 \\
\hline
2 \\
2
\end{array}$$
22) $\overline{)}1$

अतः
$$\frac{2}{11} = 0.1818...$$

असांत दशमलव है।

यहाँ उदाहरण (i) एवं (ii) के दशमलव निरूपण सांत हैं। जबकि परिमेय संख्याओं (iii), (iv), (v) व (vi) के दशमलव निरूपण असांत हैं?

आप कुछ परिमेय संख्याएं सोचिए तथा दोस्तों से पूछिए कि उनका दशमलव निरूपण सांत है अथवा असांत।

असांत आवर्ती दशमलव का निरूपण

उदाहरण (iii) का भागफल .1666...... है। इसमें 6 बार-बार दोहराया जा रहा है। उदाहरण (iv) का भागफल 0.14285714.... है। इसको ध्यान से देखने पर एक, चार, दो, आठ, पाँच, सात को बार-बार दोहराया जा रहा है। इसी प्रकार (अ) में 2 तथा (अप) में एक आठ बार-बार दोहराए जा रहे हैं। इनमें भाग की क्रिया कभी पूर्ण नहीं होती है। ये दशमलव के बाद की असांत संख्याएं हैं। चूंकि एक या एक से अधिक संख्याओं के समूह की पुनरावृत्ति बार-बार होती है। इसलिए इन्हें असांत आवर्ती दशमलव संख्याएँ भी कहते है।

दशमलव के बाद यदि संख्याओं के अंक दोहराए जाते हैं तब जो अंक दोहराए जाते हैं उनके ऊपर '-' अथवा '.' का चिन्ह लगा देते हैं।

जैसे:-
$$\frac{1}{6} = 0.1666... = 0.1\overline{6}$$
 ्या $0.1\overline{6}$

यदि दशमलव के बाद एक से अधिक अंक दोहराए जाते हैं तब प्रत्येक आवर्ती अंक के ऊपर "-" का या प्रथम एवं अन्तिम आवर्ती अंक पर "." का चिन्ह लगा देते हैं।

जैसे:-
$$\frac{1}{7} = 0.14285714... = 0.\overline{142857}$$
 या 0.142857

$$\frac{2}{9} = 0.222... = 0.\overline{2}$$
 $\frac{2}{11} = 0.1818... = 0.\overline{18}$
 $\frac{2}{11} = 0.1818... = 0.\overline{18}$

क्रियाकलाप 1

नीचे कुछ परिमेय संख्याएं दी गई है संख्याओं का दशमलव निरूपण कर यह बताइए कि वे सांत है अथवा असांत।

क्र.सं.	परिमेय संख्या	दशमलव संख्या	सांत अथवा असांत
1.	$\frac{1}{2}$		
2.	1/3		
3.	1/4		
4.	1/5		
5.	1/6		
6.	1/7		
7.	1/8		
8.	1/9		

सांत और असांत परिमेय संख्याओं को अलग-अलग छाँटिए। किस प्रकार की परिमेय संख्याओं का दशमलव निरूपण सांत संख्याओं के रूप में किया जा सकता है, उनकी क्या विशेषताएं है? लिखिए -

आपने देखा कि 2 4 5 और 8 ऐसी संख्याएं है जिनका दशमलव निरूपण सांत संख्याओं के रूप में हो रहा है।

यदि $\frac{-}{2}$ का दशमलव निरूपण सांत है तो 6 का दशमलव निरूपण असांत क्यों है, सोच कर हल ढूँढिए?

आप यह तो जान ही चुके है कि सांत और असांत दशमलव, परिमेय संख्याओं के हर की विशेषता के कारण प्राप्त हो रहे है।

आइए देखें, किस प्रकार किसी परिमेय संख्या के हर के अभाज्य गुणनखण्ड के आधार पर दशमलव के बाद की संख्याएं सांत अथवा असांत होगी।

क्रियाकलाप 2

5 24 3 21

2`25`10`8 को दशमलव में निरूपित कीजिए तथा देखिए कि ये सांत हैं अथवा नहीं? मनोहर ने सबसे पहले खड़े होकर कहा कि ये सभी सांत है।

अब इन संख्याओं के हरों के अभाज्य गुणनखण्ड करके देखिए।

आपने देखा होगा कि इन सभी संख्याओं के हरों के अभाज्य गुणनखण्ड में संख्याएं 2 या 5 या दोनों ही है। अतः इस प्रकार की संख्याओं के दशमलव निरूपण में दशमलव के बाद के अंक सांत होगे।

पूर्व में हमने देखा कि 6 ं 7 ं 9 ' 11 आदि के दशमलव निरूपण में दशमलव के बाद की संख्याएँ असांत है।

इन संख्याओं के हर के अभाज्य गुणनखण्ड़ निकालकर देखिए। क्या इन सभी के हर के अभाज्य गुणनखण्ड में 2 या 5 के अतिरिक्त अन्य अभाज्य संख्याएँ भी है?

अतः इस प्रकार की संख्याओं के दशमलव निरूपण में दशमलव के बाद के अंक असांत होंगे।

उदाहरण 1.

(iii)

निम्न में से किन संख्याओं में दशमलव के बाद के अंक सांत है तथा किनके असांत?

- $\frac{4}{\text{(i)}} \frac{5}{125}$ $\frac{11}{\text{(ii)}} \frac{13}{8}$ $\frac{13}{\text{(iv)}} \frac{100}{100}$

यहाँ हर के अभाज्य गुणनखण्ड में 5 है। अतः इस संख्या के दशमलव निरूपण में दशमलव के बाद की संख्याएँ सांत होगी।

;पपद्ध में हर 18 का अभाज्य गुणनखण्ड = 2 × 3 × 3

यहाँ अभाज्य गुणनखण्ड में 2 या 5 के अतिरिक्त अन्य संख्या 3 भी है। अतः इसके दशमलव निरूपण में दशमलव के बाद की संख्या असांत होगी।

11 8 में हर 8 का अभाज्य गुणनखण्ड = 2 × 2 × 2

यहाँ हर के अभाज्य गुणनखण्ड में संख्या 2 है अतः इसके दशमलव निरूपण में दशमलव के बाद की संख्याएँ सांत हैं। 13

(iv) $\overline{100}$ में हर 100 का अभाज्य गुणनखण्ड त्र 2 × 2 × 5 × 5

यहाँ हर के अभाज्य गुणनखण्ड में संख्याएँ 2 तथा 5 है। अतः इसके दशमलव निरूपण में दशमलव के बाद की संख्याएँ सांत होगी।

अभी तक जिन परिमेय संख्याओं के दशमलव निरूपण पर विचार किया वे सभी धनात्मक परिमेय संख्याएँ थी। ऋणात्मक परिमेय संख्याओं का दशमलव निरूपण किस प्रकार होगा? सोचिए।

ऋणात्मक संख्याओं का दशमलव निरूपण

ऋणात्मक परिमेय संख्याओं के दशमलव निरूपण के लिए पहले बिना ऋण चिन्ह के परिमेय संख्या का दशमलव निरूपण प्राप्त करते हैं। उसके पश्चात् दशमलव संख्या में ऋण का चिन्ह लगा लेते हैं।

उदाहरण 2.
$$-\frac{23}{3}$$
 का दशमलव निरूपण कीजिए।

हल:
$$-\frac{23}{3}$$
 के स्थान पर $\frac{23}{3}$ का दशमलव निरूपण ज्ञात करेंगे। $\frac{23}{3}$ का दशमलव रूप – $\frac{23}{3}$ का दशमलव रूप – $\frac{23}{3}$ = 7.666 ...= $7.\overline{6}$ $\frac{23}{3}$ = 7.666 ...= $7.\overline{6}$ $\frac{23}{3}$ = 7.666 ...= $7.\overline{6}$ $\frac{-18}{20}$ $\frac{-18}{20}$ $\frac{-23}{3}$ = $-7.\overline{6}$ $\frac{-18}{20}$

प्रश्नावली 11.1

- 1. बिना भाग दिए निम्न में से सांत एवं असांत आवर्ती पदों वाली दशमलव संख्याओं को छांटिए। $\frac{4}{5}$, $\frac{8}{7}$, $\frac{-15}{49}$, $\frac{3}{50}$, $\frac{3}{28}$
- 3. निम्न परिमेय संख्याओं को दशमलव रूप में लिखिए। $\frac{2}{3}$, $\frac{-5}{6}$, $\frac{8}{15}$, $\frac{3}{11}$, $\frac{19}{45}$

दशमलव संख्याओं को परिमेय संख्या के रूप में व्यक्त करना

आपने सीखा कि परिमेय संख्याओं को कैसे दशमलव के बाद की सांत अथवा असांत आवर्ती संख्याओं में प्रदर्शित किया जा सकता है।

परंतु क्या दशमलव संख्याओं को परिमेय संख्याओं में परिवर्तित किया जा सकता है? आइये इस प्रश्न का उत्तर कुछ उदाहरणों के द्वारा ढूंढें। ____25 × 100 ___25 __ I

$$0.25 = \frac{0.25 \times 100}{100} = \frac{25}{100} = \frac{1}{4}$$
 (सरलतम रूप)

$$2.6 = \frac{2.6 \times 10}{10} = \frac{26}{10} = \frac{13}{5}$$
 (सरलतम रूप)

$$0.317 = \frac{0.317 \times 1000}{1000} = \frac{317}{1000}$$

$$4.625 = \frac{4.625 \times 1000}{1000} = \frac{4625}{1000} = \frac{37}{8}$$

उपरोक्त उदाहरणों से यह स्पष्ट है कि यदि दशमलव संख्याओं के परिमेय संख्या में परिवर्तित करने के लिए संख्या के हर में 1 के बाद इतने शून्य लिखे हैं जितने दशमलव के बाद संख्याएँ हैं तथा अंश में से दशमलव हटा दें तब परिमेय संख्याएँ प्राप्त हो जाएगी।

जैसे
$$7.21 = \frac{721}{100}$$

$$\frac{42}{4.2} = \frac{21}{5}$$
 आदि

तभी गीता ने प्रश्न किया कि "इस प्रकार तो हम दशमलव के बाद की सांत संख्याओं को परिमेय संख्याओं में परिवर्तित कर सकते हैं किन्तु यदि दशमलव के बाद की संख्याएं असांत एवं आवर्ती है तब हम उन्हें कैसे परिवर्तित करेंगे? क्योंकि इनमें दशमलव के बाद की संख्याएं अपरिवर्तित हैं। जैसे: 1.666....=

आइए, दशमलव के बाद की असांत एवं आवर्ती संख्याओं को परिमेय संख्या में परिवर्तित करने की प्रक्रिया पर विचार करें।

उदाहरण 3. $0.\overline{6}$ को परिमेय संख्या में परिवर्तित कीजिए।

हल: माना
$$x = 0.\overline{6}$$

या $x = 0.6666....$ (i)
दोनों पक्षों में 10 का गुणा करने पर
या $10x = 6.666....$ (ii)
समीकरण (ii) में से (i) को घटाने पर
या $10x - x = 6.666 - 0.666$
या $9x = 6$
 $x = \frac{6}{9} = \frac{2}{3}$ अतः $0.\overline{6} = \frac{2}{3}$

उदाहरण 4. $0.\overline{234}$ को परिमेय संख्या में परिवर्तित कीजिए।

या
$$1000x - x = 234$$
ण.234234.... - 0.234234234... $999x = 234$ या $x = \frac{234}{999} = \frac{26}{111}$ अतः $0.\overline{234} = \frac{26}{111}$

इन उदाहरणों को हल करने के लिए हमने निम्न प्रक्रिया अपनाई -

- (1) सबसे पहले दी गई दशमलव संख्या को कोई भी चर (x) माना तथा इसे समीकरण (i) नाम दिया।
- (2) दशमलव के पश्चात् जिस अंक की पुनरावृत्ति हो रही है, उसे दो या तीन बार लिखते हैं।
- (3) पुनरावृत्ति वाले अंकों को गिनकर 1 के बाद उतने ही शून्य लगाकर दोनों पक्षों में गुणा करते है तथा इसे समीकरण (ii) लिखते है।
- (4) फिर समीकरण (ii) में से (i) को घटाकर चर का मान ज्ञात करते है। तभी मनोहर ने गीता से प्रश्न किया, यदि आवृत्ति वाले अंक दशमलव के कुछ अंकों के बाद आए जैसे: 1.25666... तब इन्हें परिमेय संख्या में परिवर्तित कैसे करेंगे?

गीता सोच में पड़ गई। आइए, इस तरह के कुछ सरल उदाहरण देखें।

उदाहरण 5. $3.21\overline{6}$ को परिमेय संख्या में परिवर्तित कीजिए।

हल: माना
$$x = 3.21\overline{6}$$

या $x = 3.2166....$ (i)
दोनों पक्षों में 100 से गुणा करने पर

या $100x = 321.666.....$ (ii)
पुनः (ii) के दोनों पक्षों में 10 का गुणा करने पर

या $1000x = 3216.666.....$ (ii)
समीकरण (ii) में से (i) को घटाने पर

या $1000x - x = 3216.666 - 321.666....$

या $900x = 2895$

या $900x = 2895$
या $x = \frac{2895}{900} = \frac{193}{60}$

या $x = \frac{193}{60}$

उदाहरण 6. $0.15\overline{23}$ को परिमेय संख्या में परिवर्तित कीजिए।

समीकरण (i) के दोनों पक्षों में 100 का गुणा करने पर

पुनः (ii) के दोनों पक्षों में 100 का गुणा करने पर

समीकरण (iii)में से (ii)को घटाने पर

$$10000x - 100x = 1523.2323.... - 15.2323....$$

या 9900x = 1508

$$x = \frac{1508}{9900} = \frac{377}{2475}$$

अतः
$$0.15\overline{23} = \frac{377}{2475}$$

दोनों उदाहरणों में संख्या को मूल रूप में लाने के लिए दशमलव के बाद बिना पुनरावृत्ति वाले अंकों को गिनकर 1 के आगे उतने ही शून्य लगाकर उस संख्या से गुणा कर लेते हैं। जिससे मात्र आवर्ती वाले अंक दशमलव के बाद रह जाते है। इसके बाद पहले वाली प्रक्रिया अपनाकर परिमेय संख्या ज्ञात कर ली जाती है।

प्रश्नावली 11.2

- 1. निम्न संख्याओं को परिमेय संख्या में परिवर्तित कीजिए -
 - (a) 0.2 (b) 0.55 (c) 6.25 (d) 2.175 (e) 14.532. निम्न संख्याओं को परिमेय संख्या के रूप में लिखिए।
 - (a) (b) 7.25 (c) (d) $0.\overline{27}$ (e) $0.\overline{54}$

दशमलव संख्याओं का गुणा

परिमेय संख्याओं को दशमलव के रुप में लिखना आपने सीख लिया है। पिछली कक्षाओं में आपने पूर्णांकों का गुणा करना भी सीखा है। आइये दशमलव संख्याओं का गुणा किस प्रकार किया जाता है देखें। आइये दशमलव संख्याओं का गुणा करते हैं, यदि हम 0.2 ´ 0.3 करना चाहते हैं तब

$$0.2 = \frac{2}{10}$$
 तथा $0.3 = \frac{3}{10}$

3ৰ
$$0.2 \times 0.3 = \frac{2}{10} \times \frac{3}{10} = \frac{6}{100} = 0.06$$

अब हम देखते हैं कि पूर्णांकों 2 और 3 के गुणनफल और .2 तथा .3 के गुणनफल में पर्याप्त अंतर है। 6, 0.06 से 100 गुना बड़ा है।

उदाहरण 7. 0.31×0.04 का मान ज्ञात कीजिए।

਼ਰ:
$$0.31 = \frac{31}{100}$$
 ਰथा $0.04 = \frac{4}{100}$

$$= \frac{124}{10000}$$
 = 0.0124 उत्तर उदाहरण 8. $0.015 \times 0.3 \times 0.02$ का मान ज्ञात कीजिए।

हल:
$$0.015 = \frac{15}{1000}$$
, $0.3 = \frac{3}{10}$ तथा $0.02 = \frac{2}{100}$

हल:

সৰ
$$0.015 \times 0.3 \times 0.02 = \frac{15}{1000} \times \frac{3}{10} \times \frac{2}{100}$$

$$-\frac{90}{1000000} = 0.00009$$

क्रियाकलाप 3

सं. क्र. 1 के अनुसार नीचे रिक्त स्थानों में उचित मान लिखिए-

क्रियाकलाप ४

सं.क्र.	संख्या	गुणन प्रक्रिया	गुणनफल भिन्न के रूप में	उत्तर	उत्तर में दशमलव के बाद अंकों की संख्या
1.	0.001×0.02		$\frac{2}{100000}$	0.00002	5
2.	0.502×0.45			0.22590	5
3.	0.22×0.101				
4.					
5.					
6.					

दो दशमलव संख्याओं का गुणा करने पर गुणनफल में दशमलव बिन्दुओं को दोनों संख्याओं मे दशमलव के बाद कुल अंकों को गिनकर दाएँ से बाएँ की ओर उतने अंक छोड़कर लगाते है, यदि अंकों की संख्या कम हो तो बाएँ तरफ शून्य बढ़ाकर उतना अंक बनाते है।

निम्न गुणन संक्रियाओं में उचित स्थान पर दशमलव का चिन्ह लगाइए -

- 1. $4.283 \times 3.41 = 1460503$
- 2. $326.7 \times 0.319 = 1042173$
- 3. $9.07 \times 13.4 = 121538$
- $69.05 \times 5.044 \times 19.5 = 67916199$

दशमलव संख्याओं का विभाजन (भाग)

जिस प्रकार पूर्णांकों में विभाजन (भाग) होता है उसी प्रकार दशमलव संख्याओं में भी विभाजन होता है। यदि भाजक पूर्णांक हो

150) 4527 (30.18

000

यदि भाजक व भाज्य दोनों दशमलव संख्या में हो। उदाहरण 10.: प्रथम तरीका:

(i)
$$45.27 \div 1.5 = \frac{4527}{100} \div \frac{15}{10}$$

$$= \frac{4527}{100} \times \frac{10}{15}$$

$$= \frac{4527}{15 \times 10}$$

$$\Rightarrow 45.27 \div 1.5 = 30.18$$
दूसरा तरीका: $45.27 \div 1.5$

$$\Rightarrow \frac{45.27}{1.5} = \frac{45.27}{1.5} \times \frac{10}{10}$$

$$\Rightarrow 45.27 \div 1.5 = 30.18$$

$$\Rightarrow \frac{452.7}{15}$$

$$\Rightarrow 452.7$$

$$\Rightarrow 10$$

$$\Rightarrow 452.7$$

$$\Rightarrow 10$$

$$\Rightarrow$$

जब भाजक दशमलव संख्या हो तो उसे पूर्ण संख्या बनाने के लिए भाज्य तथा भाजक दोनों में 10, 100, आदि संख्या का गुणा करके भाजक को पूर्ण संख्या में बदल लेते हैं। उसके बाद प्राप्त संख्या को उसके हर से भाग दिया जाता है।

क्रियाकलाप 5

सं.	पहली राशि X दूसरी राशि	गुणनफल	गुणनफल ——=दूसरी राशि पहली राशि	गुणनफल ——=पहली राशि दूसरी राशि
1.		0.24		$\frac{0.24}{0.6} = 0.4$
2.	0.7×0.02	0.014		${0.2} =$
3.	0.12×0.35	0.0420		$\frac{0.0420}{0.35}$ =
4.	7.2×0.3			
5.	4.52×0.06			$\frac{0.2712}{0.06}$ =
6.	0.008×0.0007			$\frac{0.0000056}{\dots} = 0.008$

इस सारणी से यह स्पष्ट होता है कि दो संख्याओं के गुणन से प्राप्त गुणनफल में यदि पहली संख्या से भाग देते है दूसरी संख्या प्राप्त होती है और यदि प्राप्त गुणनफल में दूसरी संख्या से भाग देने पर पहली संख्या प्राप्त होगी।

यदि ,
$$x \times y = p$$

तो
$$x = \frac{p}{y}$$
 और $y = \frac{p}{x}$

क्रियाकलाप ६

निम्न भाग संक्रियाओं में उचित स्थान पर दशमलव का चिन्ह लगाइए -

- 1. 156
- 2. 468
- 3. 105
- 4. 4875
- 5. 385

उदाहरण 11. 0.512×4.375 हल कीजिए

$$0.512 \times 4.375$$

$$2560$$

$$35840$$

$$153600$$

$$2048000$$

$$2.240000$$

$$0.512 \times 4.375$$

$$= 2.240000 = 2.24$$

 $=\frac{3.942}{18}$

उदाहरण 12. 3.15÷0.02 हल कीजिए

हल:

$$3.15 \div 0.02 = \frac{3.15}{0.02} = \frac{3.15}{0.02} \times \frac{100}{100}$$
$$= \frac{315}{2}$$
$$\Rightarrow 3.15 \div 0.02 = 157.5$$

उदाहरण 13. 0.3942 ÷ 1.8 का मान ज्ञात कीजिए - **हल:**

$$0.3942 \div 1.8 = \frac{0.3942}{1.8} \times \frac{10}{10}$$

 $0.005 \times 0.84 \times 2.25$

उदाहरण 14.: 0.021×0.05×1.10 सरल कीजिए - **हल:**

$$\frac{0.005 \times 0.84 \times 2.25}{0.021 \times 0.05 \times 1.10} \times \frac{10^{7}}{10^{7}}$$

$$= \frac{5 \times 84 \times 225}{21 \times 5 \times 110}$$

$$= \frac{900}{110}$$

$$= \frac{90}{11} = 8.\overline{19}$$

प्रश्रावली 11.3

- 1. योग कीजिए
 - ; (i) 1.0087 + 0.321

- (ii) 0.2 + 0.02 + 0.0202 + 0.20204
- (iii) 3.81 + 0.009 + 10.0023
- (iv) 2.45 + 6.908 + 0.125 + 1.0074

- 2. मान ज्ञात कीजिए:-
 - (i) 7.89 2.324

- (ii) 5.01 0.00729
- (iii) 1.01 0.1 0.001 + 10.001
- (iv) 7.802 1.4 + 2.8 0.00107

- 3. हल कीजिए :-
 - (i) 243×0.15

(ii) 0.879×0.021

- (iii) $0.1 \times 0.1 \times 0.1 \times 0.1$
- (iv) $37.06 \times 0.384 \times 2.05$

- हल कीजिए :-
 - (i) $2.25 \div 15$

- (ii) $10.204 \div 0.06$
- (iii) $0.3942 \div 1.8$
- (iv) $45.225 \div 1.5$

मान ज्ञात कीजिए:-

$$0.46 \times 0.92 \times 0.1$$

 $0.00315 \times 0.5 \times 3.613$

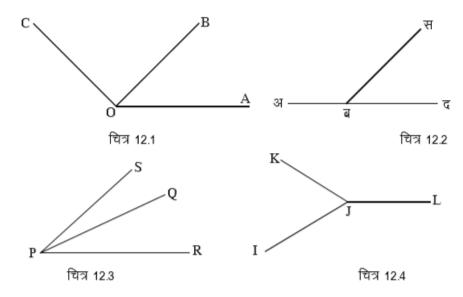
- (i) 0.023×4.6
- (ii) $0.005 \times 0.019 \times 0.03$
- 6. सुनीता ने बाजार में 23 रु. 50 पैसे का तेल, 8 रु. 15 पैसे का साबुन, 12 रु. 39पैसे में पावडर खरीदा। बताइये सुनीता ने कुल कितने रूपये का सामान खरीदा ?
- 7. सिमरन के घर का बिजली का बिल 438.70रु. आता है। यदि बिजली का किराया 1.20 रु. प्रति यूनिट हो तो सिमरन के घर कितने युनिट विद्युत खपत (खर्च) हुई।
- 8. रहीम मकान किराया 205.75 रु. प्रतिमाह की दर से देता है तो दो वर्षों में रहीम द्वारा कुल कितना मकान किराया दिया जावेगा।

हमने सीखा

- 1. प्रत्येक परिमेय संख्या को दशमलव के रूप में लिखा जा सकता है।
- 2. दशमलव संख्या को परिमेय संख्या में बदला जा सकता है।
- 3. परिमेय संख्या को दशमलव में बदलने पर यदि कुछ पदों के बाद भाग की प्रक्रिया समाप्त हो जाती है, तो वह सांत दशमलव कहलाती है अन्यथा असांत।
- 4. सांत दशमलव वाले परिमेय संख्या के हर के अभाज्य गुणनखण्ड में केवल 2 और 5 के गुणज होते हैं।

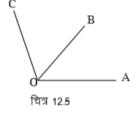
5. परिमेय संख्या को दशमलव में बदलने पर दशमलव के बाद यदि एक या एक से अधिक अंक बार-बार आते हैं और भाग की प्रक्रिया कभी भी समाप्त नहीं होती है, तो बार-बार आने वाली संख्याओं को दशमलव के बाद की आवर्ती संख्याएँ कहते हैं। आवर्ती अंक के ऊपर एक रेखा "-" अथवा पहले तथा अंतिम आवर्ती अंक के ऊपर बिन्दु". " लगाया जाता है।

अध्याय बारह



कोण, रेखीय युग्म एवं तिर्यक रेखाएँ (Angle, Pair of Straight lines & Transversals)

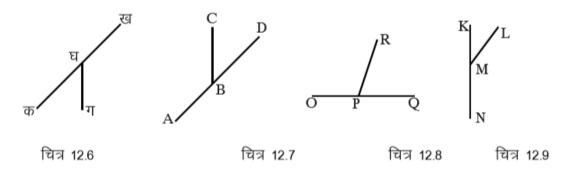
आपने पूर्व कक्षा में कोण, कोण की माप एवं कोणों के कुछ प्रकारों के बारे में जाना है। आइए अब कोण युग्मों की चर्चा करें।


कोणों के युग्म

आपने प्रायः देखा होगा कि हर बिन्दु पर एक से ज्यादा कोण बनते हैं। आइए, इस के बारे में कुछ सोचें। जब उभयनिष्ठ भुजा के दोनों ओर एक ही शीर्ष पर बने दो कोणों को लेते हैं तो इस प्रकार के कोण को आसन्न कोण कहते हैं।

उपरोक्त चित्र 12.1 में ∠ COB एवं ∠ BOA आसन्न कोण हैं। चित्र 12.2 में ∠ SPQ एवं ∠ QPR आसन्न कोण हैं। चित्र 12.3 में ∠ SPQ एवं ∠ QPR आसन्न कोण है। चित्र 12.4 में ∠ IJK एवं ∠ KJL आसन्न कोण हैं।

आइएं, आसन्न कोणों के बारे में कुछ और जानकारियाँ प्राप्त करें -

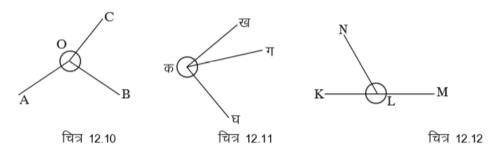


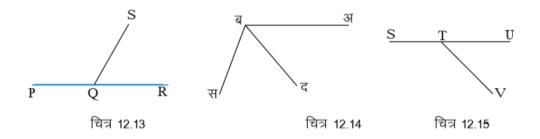
उपरोक्त चित्र 12.5 में यदि O शीर्ष और OA एक उभयनिष्ठ भुजा है तो क्या ∠ AOC और ∠AOB आसन्न कोण हैं? यदि नहीं तो क्यों?

उपरोक्त चित्र 12.5 में आप देख रहे है कि ∠ AOB तथा ∠ AOC उभयनिष्ठ रेखा OA के एक ही ओर बन रहे हैं इसलिए वे आसन्न कोण नहीं है। ∠ AOB और ∠ BOC आसन्न कोण हैं क्योंकि वे उभयनिष्ठ भुजा OB के दोनों ओर बने हैं।

रेखिक युग्म

आसन्न कोणों की वे भुजाएं जो उभयनिष्ठ नहीं है एक सरल रेखा में हों तो उनसे बने आसन्न कोण रैखिक युग्म कहलाते हैं अर्थात् **जब दो आसन्न कोणों के मापों का योग 180° होता है तब उसे रैखिक** युग्म कहते हैं। इन्हें सरल रेखीय आसन्न कोण या रेखीय कोण भी कहते है। जैसे-(सरल रेखीय आसन्न कोण)

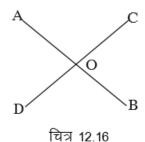



उपरोक्त चित्र 12.6, 12.7, 12.8, 12.9 को देखें। इनमें आसन्न कोण एवं उनका योग निम्नानुसार हैं:-

चित्र 12.6 - ∠ कघग + ∠ खघग = 180° चित्र 12.7 - ∠ ABC + ∠ CBD = 180° \ चित्र 12.8 - ∠ OPR + ∠ RPQ = ? चित्र 12.9 - ∠ KML + ∠ LMN = ?

क्रियाकलाप 1

नीचे दिए गए चित्रों में आसन्न कोण एवं रेखीय कोणों के युग्मों को पहचान कर सारणी में लिखिए।



सारणी 1

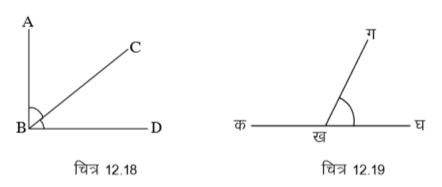
आसन्न कोण	रेखीय कोण

शीर्षाभिमुख कोण

उपरोक्त चित्र में 🗸 AOC के विपरीत कौनसा कोण है? इसी प्रकार 🗸 AOD के विपरीत कौनसा कोण है?

आपने देखा कि जब दो सरल रेखायें या रेखा खण्ड एक दूसरे को किसी बिन्दु पर काटते हैं तो कटान बिन्दु पर चार कोण बनते हैं जिनमें से विपरीत दिशा के दो कोणों को शीर्षाभिमुख कोण कहते हैं तथा वे माप में एक दूसरे के समान (equal) होते हैं।

क्रियाकलाप 2


झाड़ू की दो सींक लेकर उनके बीचों-बीच एक पिन लगाएं। इससे सींक घुमायी जा सकेगी। अलग-अलग स्थितियों में घुमाकर सींकों के बीच बनने वाली सम्मुख कोणों को मापकर लिखें।

अपनी कॉपी पर दो सरल रेखाखण्ड इस प्रकार खींचे कि वे एक बिन्दु पर काटते हों । इनसे बनने वाले सम्मुख कोणों को नापें।

पूरक कोण तथा सम्पूरक कोण

नीचे दो प्रकार के आसन्न कोण दिए गए हैं। इन्हें सावधानी से मापकर लिखे।

चित्र 12.18 आसन्न कोण ∠ ABC + ∠ CBD = चित्र 12.19 आसन्न कोण ∠ क ख ग + ∠ ग ख घ =

चित्र 12.18 के दोनों आसन्न कोणों के मापों का योग 90° है।

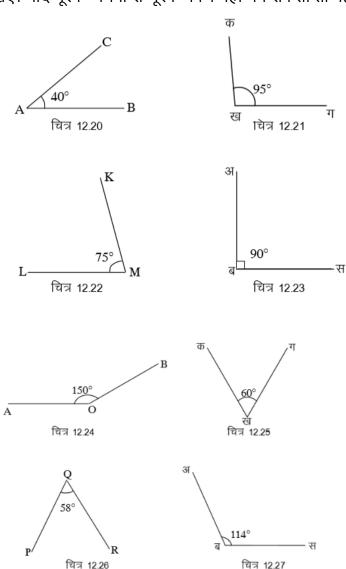
चित्र 12.19 के आसन्न कोणों के मापों का योग 180° है।

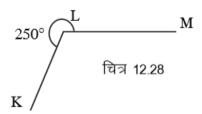
पूरक कोण

जब दो कोणों की मापों का योग एक समकोण या 90° हो तो प्रत्येक कोण एक दूसरे का पूरक कोण कहलाता है।

जैसे:- चित्र 12.18 में $\angle ABC + \angle CBD = 90^\circ$ इसलिए \angle ABC और \angle CBD परस्पर पूरक कोण हैं। यदि \angle ABC = 40° हो तो पूरक कोण \angle CBD = 90^0 - 40 = 500 होगा।

सम्पूरक कोण


जब दो कोणों की मापों का योग दो समकोण या 180° हो तो प्रत्येक कोण एक दूसरे का संपूरक कोण कहलाता है।


जैसे - चित्र 12.19 में ∠ क खंग + ∠ ग खंघ त्र 180° इसलिए ∠ क खंग और ∠ ग खंघ परस्पर सम्पूरक कोण हैं। यदि ∠ क खंग = 125° हो तो सम्पूरक ∠ ग खंघ = 180° - 125° = 55° होगा।

क्रियाकलाप 3.

दिए गए चित्रों में कोणों के माप दिए हुए हैं। सारणी में दिए गए कोणों के पूरक और सम्पूरक कोणों की माप लिखिए। यदि पूरक अथवा सम्पूरक कोण नहीं बन सकता तो वह भी लिखिए।

सारणी 2

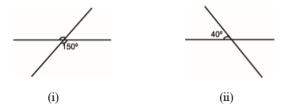
चित्र.क्र.	कोण	पूरक कोण	संपूरक कोण	यदि संभव
		की माप	की माप	नहीं तो क्यों?
12.20	∠CAB	90° - 40° = 50°	$180^{\circ} - 40^{\circ} = 140^{\circ}$	संभव है।
12.21	∠क ख ग			
12.22	∠KML			
12.23	∠अ ब स			
12.24	∠AOB			
12.25	∠क ख ग			
12.26	∠PQR			
12.27	∠अ ब स			
12.28	∠MLK			

प्रश्नावली 12.1

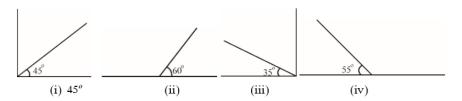
प्रश्न 1. निम्नलिखित कोणों की परिभाषा लिखिए -

- शीर्षाभिमुख कोण सम्पूरक कोण (3) आसन्न कोण (1) (2) प्रश्न 2. निम्नलिखित कोणों के पूरक कोण बताइए -
- 40° (2) 50° (3) 60° (4) 75° (5) 0° (6) 70° (1) प्रश्न 3. निम्नलिखित कोणों के सम्पूरक कोण बताइए -
- 70° 110° (2) (3) 0° (4) 120° (5) 45° (6) 50°
- प्रश्न 4. एक कोण अपने पूरक कोण का दुगुना है। दोनों कोणों के माप बताइए। प्रश्न 5. एक कोण अपने सम्पूरक का आधा है, वह कोण ज्ञात कीजिए।
- प्रश्न 6. XOZ व SOY दो सरल रेखा हैं। यदि \angle XOY = 40° हो तो

∠SOZ व ∠XOS का मान बताइए।

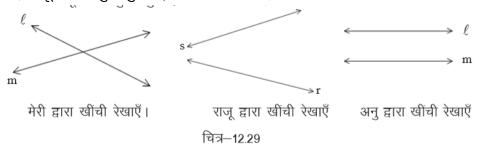

प्रश्न 7. यदि दो आसन्न कोणों का योग 180° हो, तो वे कैसे कोण हैं।

प्रश्न 8. रैखिक युग्म का एक कोण नीचे दिया गया है। दूसरा कोण ज्ञात कीजिए।


(iii) 72° (v)125° 35° (ii) 105° (iv) 140° i) (vi) 154°

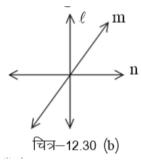
प्रश्न 9. नीचे दिए गए चित्रों में एक कोण का मान दिया गया है। दूसरे शीर्षाभिमुख कोण का मान ज्ञात कीजिए।

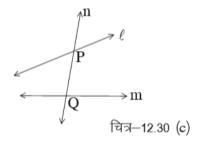
प्रश्न 10. नीचे दिए गए चित्रों में एक कोण का मान दिया गया है। शेष तीनों कोणों का मान ज्ञात कीजिए।


प्रश्न 11.नीचे दिए गए चित्र में आसन्न कोणों में एक कोण का मान दिया गया है। दूसरा आसन्न कोण ज्ञात कीजिए।

क्रियाकलाप 4.

अपनी कॉपी में दो सरल रेखाएं खींचिए। इन सरल रेखाओं को ध्यान से देखिए और नीचे दिए गए प्रश्नों के उत्तर ढूँढिए-


- 1. क्या आपके द्वारा खींची गई रेखाएँ एक दूसरे को काट रही हैं? यदि नहीं काट रही है तो क्या इन रेखाओं को आगे बढ़ाने पर वे एक दूसरे को काटेंगी?
- 2. यदि दोनों स्थितियों में आपका उत्तर नहीं है तो ये किस तरह की रेखाएँ हैं? मेरी, राजू और अनु ने कुछ इस तरह की रेखाएँ खींची।


यहाँ अनु द्वारा खींची गयी रेखाएँ एक दूसरे को कभी नहीं काटती है। अतः ये समान्तर रेखाएँ हैं। मेरी और राजू द्वारा खींची गई रेखाएँ एक दूसरे को काट रही है अथवा आगे बढ़ाने पर काटेगी, ये प्रतिच्छेदी रेखाएँ हैं।

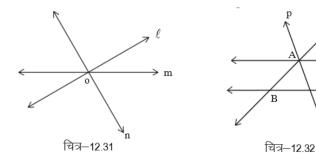
ऊपर आपने देखा कि दो सरल रेखाएँ कितनी तरह से खींची जा सकती हैं, उसी प्रकार आप अपनी कॉपी में तीन सरल रेखाएँ बनाइये और देखिए कि उन्हें कितनी तरह से खींच सकते हैं। आइए, संभावित स्थितियों को देखें-1. जब तीनों रेखाएँ समान्तर हांे जैसे-

- ℓ ← → → → → → → ☐ ☐ ₹ 12.30 (a)
- 2. जब तीनों रेखाएँ एक दूसरे को एक ही बिन्दु पर काट रही हों, जैसे यहाँ I,m और n संगामी रेखाएँ हैं।

3. जब एक सरल रेखा अन्य दो सरल रेखाओं को दो अलग-अलग बिन्दुओं पर काटती हों, जैसे-

यहाँ सरल रेखाएं n, सरल रेखा। और m को अलग-अलग बिन्दुओं P और Q पर काटती है। इसलिए रेखा दए रेखा स और उ पर तिर्यक या प्रतिच्छेदी रेखा है।

ऊपर चित्र में। और m को आगे बढ़ाने पर वे एक दूसरे को काटेंगी तो क्या रेखा m रेखा। और रेखा n की तिर्यक रेखा होगी?

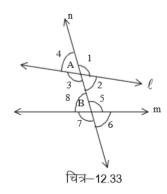

क्या रेखा । रेखा m और रेखा n पर तिर्यक रेखा होगी? यदि तिर्यक रेखा होगी तो क्यों? कारण लिखिए।

चूंकि रेखा m, रेखा। और n को अलग-अलग बिन्दुओं पर काटती है, उसी प्रकार रेखा। रेखा m और n को अलग-अलग बिन्दुओं पर काटती है, इसलिए रेखा m और। तिर्यक रेखाएँ होंगी।

अतः "वह रेखा जो एक ही तल में स्थित दो या दो से अधिक रेखाओं को अलग-अलग बिन्दुओं पर काटती हो, तिर्यक रेखा कहलाती है।"

संगामी रेखाएँ

क्या चित्र-12.31 व 12.32 में दी गई रेखाएँ तिर्यक रेखाएँ हैं?

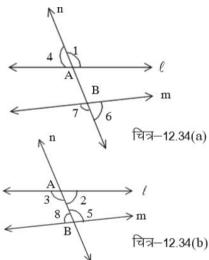


चित्र-12.31 में रेखा n, I व m परस्पर एक ही बिन्दु पर काटती है, अतः ये संगामी रेखाएँ हैं।

चित्र-12.32 में रेखा p, रेखाओं I, m व n को तीन अलग-अलग बिन्दुओं पर नहीं काटती हैं, अतः यह रेखा p, रेखाओं I,m व n की तिर्यक रेखा नहीं है। परन्तु रेखा p रेखा I व m की तिर्यक रेखा है। उसी प्रकार रेखा n भी रेखा I व m की तिर्यक रेखा है।

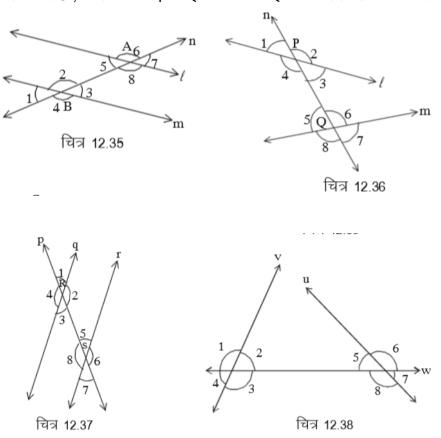
चित्र-12.32 में संगामी रेखाओं का नाम बताइये?

दो रेखाओं के साथ तिर्यक रेखा द्वारा बनाए गए कोण:-


चित्र-12.33 में। और m दो रेखाएँ तथा n तिर्यक रेखा है क्योंकि यह रेखाओं। व m को दो अलग-अलग बिन्दुओं क्रमशः A व B पर काटती हैं।

चित्र-12.33 में रेखा दए रेखा स के साथ बिन्दु । पर 4 कोण तथा रेखा उ के साथ बिन्दु ठ पर भी 4 कोण बनाती हैं। अतः कोई भी तिर्यक रेखा किन्हीं दो रेखाओं पर कुल 8 कोण बनाती हैं। कोंणो को क्रमशः ∠1, ∠2, ∠3, ∠4, ∠5, ∠6, ∠7 व ∠8 द्वारा दर्शाया गया है। बाह्य कोण एवं अन्तःकोण

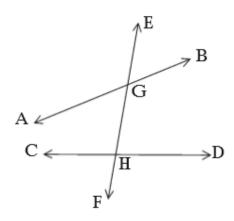
चित्र-12.34 $\angle 1$, $\angle 2$, $\angle 3$, $\angle 4$, $\angle 5$, $\angle 6$ व $\angle 7$ बाह्य कोण हैं क्योंकि ये सभी कोण रेखाओं। व m के बाहर की ओर बनते हैं।


बाह्य कोण तिर्यक रेखा के कटे हुए भाग AB के साथ नहीं बनते हैं।

चित्र-12.34(b) में ∠2, ∠3, ∠5,व ∠8 अन्तःकोण हैं क्योंकि ये सभी कोण रेखाओं। व m के अन्दर की ओर बने है। अन्तःकोण तिर्यक रेखा के कटे हुए भाग AB के साथ बनते है।

क्रियाकलाप-5

निम्न चित्रों में तिर्यक रेखा, अन्तःकोण एवं बाह्य कोण को पहचान कर तालिका में भरिये।


सारणी–3

चित्र क्रमांक	तिर्यक रेखा का नाम	बाह्य कोण क्रमांक	अन्तःकोण क्रमांक
12.35	रेखाnव/तथाnवm	∠1, ∠4,∠6,∠7	∠2,∠3,∠5,∠8
12.36			
12.37			
12.38			

उसी प्रकार दूसरी ओर भी दो बाह्य कोण और दो अन्तःकोण बनते हैं।

क्रियाकलाप-६

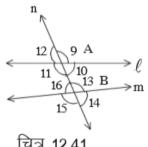
नीचे दिए गए चित्र को देखिए और पूछे गये प्रश्नों के हल हूँढिये-

चित्र 12.39

Я.1	EF के दाहिने ओर के बाह्य कोणों को लिखिए-	
	(i) ∠EGB (ii)	∠DHF
Я.2	EF के दाहिने ओर के अन्तः कोणों को लिखिए-	
	(i) (ii)	
Я.3	(i)(ii) EF के बायीं ओर के बाह्य कोणों को लिखिए-	
	(i) (ii) EF के बायीं ओर के अन्तः कोणों को लिखिए-	
Я.4	EF के बायीं ओर के अन्तः कोणों को लिखिए-	
	(i)(ii) EF के दायीं और बायीं ओर के उन बाह्य कोणों के	
	ा एक दूसरे से सटे हुए ना हो। जैसे- ∠EGB और	
विपरीत	त ओर बन रहे हैं और एक दूसरे से सटे हुए भी नर्ह	ों हैं। इसी प्रकार ∠AGE और ∠
	2 0 0 2 2	
	म्थ् के दायीं तथा बायीं ओर के उन अन्तःकोणों वे	र्ज़ जोड़े बनायें जो एक दूसरे से सटे हुए ना हो एवं
विपरीत	त ओर हो।	
	(1) ∠ और ∠ (2) ∠ औ	₹ ∠

इस प्रकार **बाह्य कोणों का वह जोड़ा जो तिर्यक रेखा के विपरीत ओर स्थित हो तथा एक** दूसरे से सटा हुआ न हो, बाह्य एकान्तर कोण कहलाता है तथा उसी प्रकार अन्तःकोणों का वह जोड़ा जो तिर्यक रेखा के विपरीत ओर स्थित हो तथा एक दूसरे से सटे हुए न हो, अन्तः एकान्तर कोण कहलाता है।

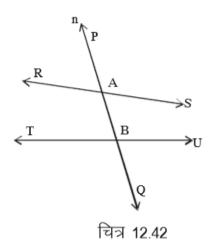
क्रियाकलाप २ के चित्रों में बाह्य एकांतर कोण तथा अन्तः एकांतर कोणों को छांटकर लिखिए।


संगत कोण

आप जानते हैं कि दो सरल रेखाओं को जब एक तिर्यक रेखा काटती है, तो कुल 8 कोण बनते हैं-तिर्यक रेखा के एक ओर चार कोण व दूसरी ओर चार कोण। जैसे चित्र 12.40 में तिर्यक रेखा के दाहिनी ओर $\angle 1, \angle 2, \angle 5$ और $\angle 6$ तथा बार्यों ओर $\angle 4, \angle 3, \angle 8$ और $\angle 7$ कोण बन रहे हैं। उसी प्रकार प्रत्येक रेखा के ऊपर दो कोण तथा नीचे दो कोण बन रहे हैं। जैसे- रेखा n के ऊपर ∠1 और ∠4 तथा नीचे $\angle 2$ और $\angle 3$ बन रहे हैं। ऐसे ही कोण रेखा। के ऊपर $\angle 5$ और $\angle 8$ तथा रेखा के नीचे $\angle 6$ और ∠ 7 बन रहे हैं।

तिर्यक रेखा के एक तरफ और दोनों रेखाओं के ऊपर तथा नीचे की ओर बनने वाले कोणों को संगत कोण कहते हैं। चित्र 12.40 में तिर्यक रेखा n की दायीं ओर रेखा। और m के ऊपर बनने वाले कोण ∠1 और ∠5 संगत कोण है। उसी प्रकार रेखा द की दायीं ओर रेखा। और m के नीचे बनने वाले

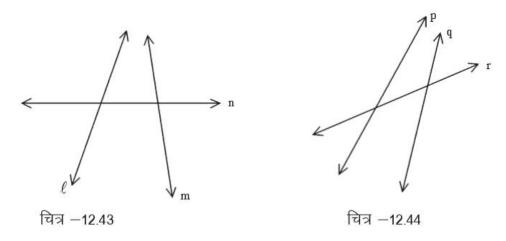
याकलाप-7


कोण 🗸 2 और 🗸 6 संगतकोण हैं। रेखा द की बायीं ओर बनने वाले संगत कोणों के जोड़ों को लिखिए-

चित्र 12.41

चित्र 12.41 में संगत कोण के चार जोडों को लिखिए–

- (i) और
- (ii) और
- (iii) और
- (iv) और

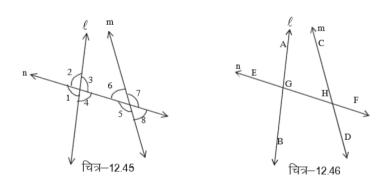

चित्र 12.42 में संगत कोण के चार जोडों को लिखिए-

- (i) ∠PAS और ∠ABU
- (ii) ∠..... और ∠......
- (iii) ∠..... और ∠......
- (iv) ∠..... और ∠......

आपने देखा कि संगत कोण के जोड़े तिर्यक रेखा के एक ही ओर बनते है। उनमें से एक बाह्य कोण व एक अन्तः कोण होता है और ये कोण एक ही बिन्दु पर नहीं बनते हैं।

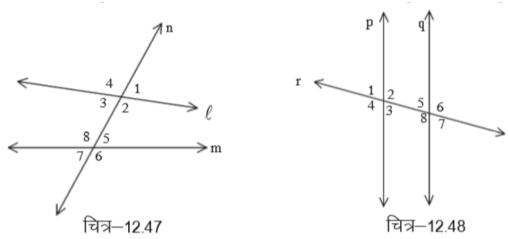
क्रियाकलाप-8

निम्न चित्रों में कोणों को नामांकित करके संगत कोणों के युग्मों के नाम तालिका में लिखिए-

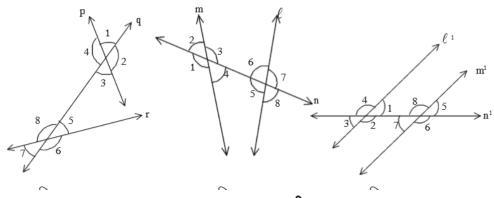


सारणी-4

चित्र क्रमांक	संगत कोण युग्म				
चित्र—12.43 (i)	, (ii), (iii), (iv)				
चित्र—12.44 (i)	, (ii), (iii), (iv)				


अन्तःकोणों का युग्म

तिर्यक रेखा द्वारा दो सरल रेखाओं को काटने पर चार अन्तः कोण बनते हैं। इस प्रकार अन्तः कोण के दो युग्म बनते हैं। आइये, निम्नांकित चित्र को देंखे-


चित्र-12.45 में अन्तःकोण के युग्म \angle 3 व \angle 6 है, जो कि तिर्यक रेखा के एक ही ओर स्थित हैं। इसी प्रकार अंतःकोण के युग्म \angle 4 व \angle 5 है जो कि तिर्यक रेखा के दूसरी ओर स्थित है। इसी प्रकार चित्र 12.46 में तिर्यक रेखा के दोनों ओर बनने वाले अन्तःकोणों के युग्म को पहचान कर लिखिए- (i). -----, (ii) -----, ------

अर्थात अन्तःकोण के युग्म तिर्यक रेखा के एक ही ओर बनते हैं परन्तु एक ही बिन्दु पर नहीं बनते हैं।

चित्र 12.47 व 12.48 में तिर्यक रेखा के एक ही ओर के अन्तःकोणों को चाँदें की सहायता से मापकर उनका योगफल कीजिए।

क्रियाकलाप-9

सारणी–5

चित्र	संगत कोणों का युग्म	एकांतर कोणों व	अंत कोणों	
संख्या	का नाम	कोण बाह्य	का युग्म	
12.49	(i) ∠1 व ∠8 (ii)	(i)	(i) ∠1 व ∠6	(i) ∠3व∠5
	(iii) (iv)	(ii)	(ii)	(ii)
12.50	(i) (ii)	(i) ∠3 व∠5	(i)	(i)
	(iii) (iv)	(ii)	(ii)	(ii)
12.51	(i) (ii)	(i)	(i)	(i)
	(iii) (iv)	(ii)	(ii)	(ii)

दिये गये चित्रों में संगत कोण, एकान्तर कोण एवं अन्तःकोण के युग्मों को तालिका में भरिए।

समान्तर रेखाएँ एवं तिर्यक रेखा

अभी तक आपने पढ़ा है कि जब दो समान्तर रेखाओं को एक तिर्यक रेखा काटती है तो संगत कोण, एकान्तर कोण एवं अन्तः कोण बनते हैं। आइए, इस प्रकार बने संगत कोणों के युग्म, एकान्तर कोणों के युग्म एवं अन्तः कोणों को माप कर इनकी विशेषताओं को जानें।

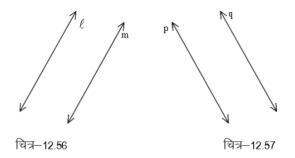
क्रियाक लाप-10 n 1 2 7 2 4 3 8 7 चित्र 12.52 वित्र 12.53

उपरोक्त चित्रों में प्रत्येक कोण को चाँदे की सहायता से मापकर निम्नांकित सारणी-4 में दिये रिक्त स्थानों की पूर्ति कीजिए-

सारणी-6

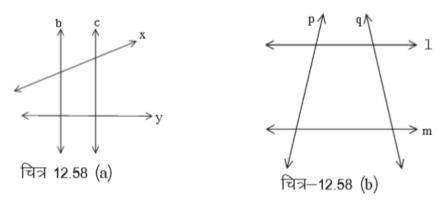
	संगत कोण						
चि.क्र.	पहर	ना युग्म	दूसरा	युग्म	तीसर	युग्म	चौथा युग्म
12.52	∠1=,	∠5=	∠2=	∠6=	∠3=	∠7=	∠4= ∠8=
12.53	∠1=,	∠5=	∠2=	∠6=	∠3=	∠7=	∠4= ∠8=
12.54	∠1=,	∠5=	∠2=	∠6=	∠3=	∠7=	∠4= ∠8=
12.55	∠1=,	∠5=	∠2=	∠6=	∠3=	∠7=	∠4= ∠8=

सारणी 6 देखकर बताइये कि किन-किन चित्रों में संगत कोण युग्मों के कोण आपस में बराबर हैं? चित्र क्रमांक लिखिए।


क्रमांक लिखिए।,,, जिन चित्रों में संगत कोण युग्म के कोण बराबर हैं, उनमें दी गई रेखाओं को पहचानिये। क्या आप बता सकते हैं कि इन रेखाओं की क्या विशेषताएँ हैं?

आप ने ठीक ही सोचा। चित्र 12.52 और 12.54 में तिर्यक रेखा से काटने वाली रेखाएँ समान्तर रेखाएँ हैं।

तो क्या जब दो समंातर रेखाओं को एक तिर्यक रेखा काटती है तो बनने वाले संगत कोण आपस में बराबर होते हैं? आइए, हम कुछ और समान्तर रेखाएँ तथा उनको काटने वाली तिर्यक रेखाएँ खींच कर इसकी जाँच करें।


क्रियाकलाप-11(i)

निम्नांकित चित्रों में दी गई रेखाएँ समान्तर हैं तो कोई भी तिर्यक रेखा खींच कर यह जाँच कीजिए कि संगत कोण बराबर हैं या नहीं।

क्रियाकलाप-11(ii)

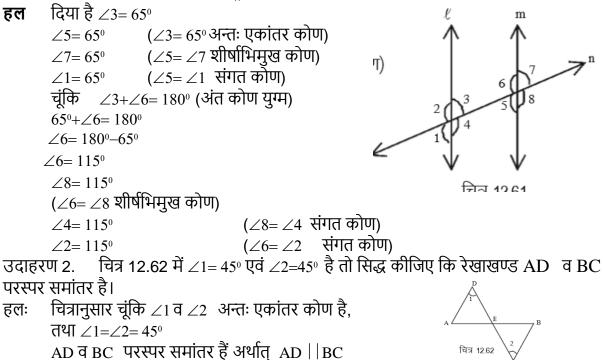
चित्र-12.58 (a) व 12.58 (b) में कौन-कौन सी रेखाएं आपस में समांतर हैं? आप ने इन्हें समान्तर क्यों कहा? कारण लिखिए।

क्रियाकलाप-12(i)

निम्नांकित चित्रों में कोणों को मापकर तालिका में निर्देशानुसार रिक्त स्थानों की पूर्ति कीजिए-

एकांतर कोण युग्म अन्तःकोण युग्म चित्र क्रमांक बाह्य एकांतर अन्तः एकांतर योगफल माप कोण का माप कोण का माप 12.59 ∠1=.....∠7=..... ∠3=...... ∠5=...... ∠3 +∠6=.....+..... ∠4=......∠6=..... ∠4 +∠5=.....+..... ∠2=......∠8=...... ∠3=....., ∠5=..... 12.60 ∠1=.....∠7=..... ∠3 +∠6=.....+..... ∠4=....., ∠6=..... ∠4 +∠5=.....+..... ∠2=.....∠8=.....

सारणी–7

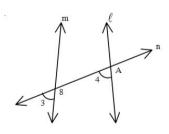

एकान्तर कोण युग्म के मानों में क्या समानता हैं? क्या बाह्य एकांतर कोण के युग्म बराबर हैं? क्या इसी प्रकार अन्तः एकान्तर कोण भी बराबर है?

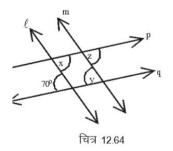
तो क्या ''जब दो समान्तर रेखाओं को एक तिर्यक रेखा काटती है तो बने हुए एकांतर कोण आपस में बराबर होते हैं?'' ऐसे ही कई समान्तर रेखाएँ खींचकर एकान्तर कोणों के युग्मों को पहचानिए और नाप कर देखिए।

तो क्या हम यह कह सकते हैं कि यदि एकांतर कोण बराबर हों तो दी गई सरल रेखाएँ परस्पर समांतर होती है? क्या उपरोक्त तालिका में प्राप्त अंतःकोण के युग्म का योगफल आपस में बराबर है? इनके मान आपस में बराबर नहीं है परन्तु अन्तःकोणों के युग्मों का योगफल समान (लगभग 1800) आ रहा है और ऐसा ही मान चित्र 12.48 में भी प्राप्त हुआ।

तो क्या हम कह सकते हैं कि जब दो समान्तर रेखाओं को कोई तिर्यक रेखा काटती है तब तिर्यक रेखा के एक ही ओर बने अन्तःकोणों का योग 1800 होता है।

उदाहरण 1. संलग्न चित्र 12.61 में $\ell || \mathbf{m}$ तथा $\angle 3 = 65$ है, तो अन्य सभी कोणों के मान ज्ञात कीजिए।

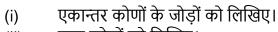


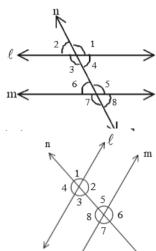

उदाहरण 3. चित्र 12.63 में ∠3= 35° एवं ∠4= 40° दिया गया है। क्या रेखाएँ। व m परस्पर समांतर है? अपने उत्तर का कारण दीजिए।

हलः चित्रानुसार, चूंिक \angle 3 व \angle 4 संगत कोण है, और \angle 3 1 \angle 4 अतः रेखाएँ। व $_{\rm m}$ परस्पर समांतर नहीं है।

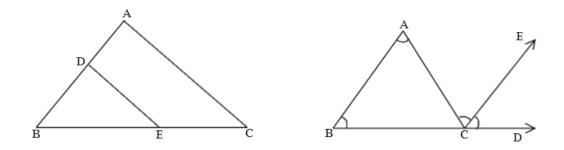
उदाहरण 4. चित्र 12.64 में दिया गया है कि रेखाएँ $\ell \mid \mid m$ तथा $p \mid \mid q$ चित्र की सहायता से $\angle x$, $\angle y$ एवं $\angle z$ का मान ज्ञात कीजिए। हलः चूंकि $p \mid \mid q$ तथास तिर्यक रेखा है, $\angle x = 70^\circ$ (अंतः एकांतर कोण)

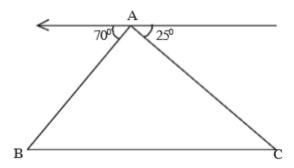
चूंकि ℓ ||m तथा q एक तिर्यक रेखा है $\angle y=70^\circ$ (संगत कोण) चूंकि ℓ ||m तथा p एक तिर्यक रेखा है $\angle z=\angle x=70$ (संगत कोण)

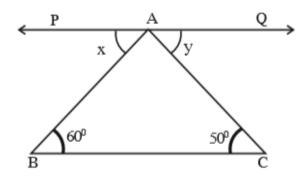


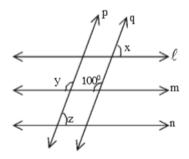

चित्र 12.63

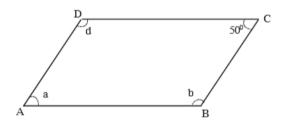
प्रश्रावली 12.2

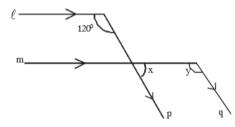

- 1. रिक्त स्थानों की पूर्ति कीजिए-
 - (i) यदि एकांतर कोण बराबर हों, तो दी गई दो सरल रेखाएँ परस्परहोंगी।
 - (ii) यदि कोई तिर्यक रेखा दो परस्पर समांतर रेखाओं को काटे, तो संगत कोण आपस में -----होते हैं।
 - (iii) यदि एकान्तर कोण युग्म का एक कोण 1270 हो तो दूसरे कोण का माप---- होगा।
 - (iv) यदि अन्तः कोण युग्म का एक कोण 87.50 हो, तो दूसरे कोण का माप ---होगा।
 - (v) यदि तीन सरल रेखाएँ एक दूसरे को एक ही बिन्दु पर काटे, तो सरल रेखाएँ -----कहलाती है।
- 2. संलग्न चित्र में। || m है तथा n एक तिर्यक रेखा है तो दिये गये निम्न कथनों में सत्य कथनों को छांटिए-
 - (i) यदि ∠2=60 तो ∠4=60° होगा।
 - (ii) यदि ∠2=60° तो ∠3=60° होगा।
 - (iii) यदि ∠2=60 तो ∠6=60° होगा।
 - (iv) यदि ∠2=60° तो ∠8=60° होगा।
- 3 संलग्न चित्र में स $\ell \mid \mid m$ एवं एक तिर्यक रेखा m है। चित्र में से

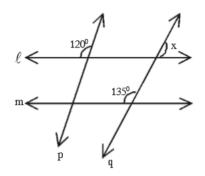

- (ii) बाह्य कोणों को लिखिए।
- (iii) अन्तःकोणों को लिखिए।
- (iv) संगत कोणों के जोड़ों को लिखिए।
- (v) अन्तः कोण युग्मों को लिखिए
- (vi) यदि $\angle 5 = 70^{\circ}$ हो तो शेष कोण बताइए।

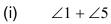

4. नीचे दिए गये चित्रों में समांतर रेखाओं के जोड़े बताइए एवं तिर्यक रेखा के नाम लिखिए-


5. नीचे दिये गये चित्र में ∠ABC और ∠ACB ज्ञात कीजिए।

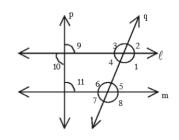

6. त्रिभुज ABC में PQ||BC तो x और y का मान ज्ञात कीजिए।


7. संलग्न चित्र में $\ell \mid \mid m \mid \mid n$ तथा $p \mid \mid q$ तो गए x,y व z मान ज्ञात कीजिए।

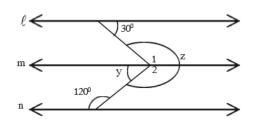

8. संलग्न चित्र में एक कोण का मान दिया गया है। a b एवं d का मान ज्ञात कीजिए।


9. संलग्न चित्र में x और y का मान ज्ञात कीजिए।

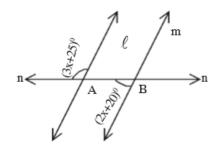
10. संलग्न चित्र में x का मान ज्ञात कीजिए यदि $\ell \mid \mid m$ है।



11. संलग्न चित्र में $\ell \mid \mid m \mid p$ और q दो प्रतिच्छेदी रेखाएँ हैं। निम्न का मान ज्ञात कीजिए।


(ii)
$$\angle 3 + \angle 5$$

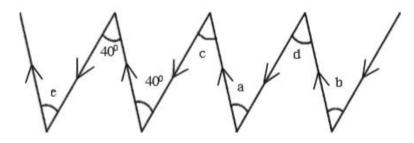
(iii) यदि $\angle 11 = 90^\circ$ तो $\angle 10$ एवं $\angle 9$ के मान ज्ञात कीजिए।



12. संलग्न चित्र में $\ell \mid \mid m \mid \mid n$ तो y एवं z का मान ज्ञात कीजिए।

जबिक
$$\angle z = \angle 1 + \angle 2$$

13. संलग्न चित्र में $\ell \mid \mid m$ तो x का मान ज्ञात कीजिए।



14. संलग्न चित्र में BL | | CY ∠A का मान ज्ञात कीजिए।

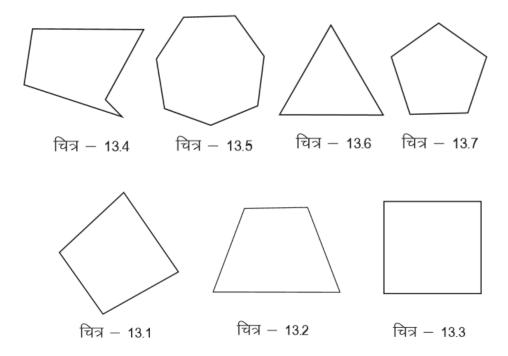
15. संलग्न चित्र में, $\angle a$, $\angle b$, $\angle c$, $\angle d$ एवं $\angle e$ के मान ज्ञात कीजिए।

हमने सीखा

- 1. आसन्न कोण उभयनिष्ठ भुजा के विपरीत ओर बने दो कोण जिनके शीर्ष एक ही हों।
- 2. रेखीय युग्म आसन्न कोण का ही विशेष प्रकार है। इनकी उभयनिष्ठ भुजा के अलावा अन्य दो भुजाएँ एक सरल रेखा बनाती हैं, जिसके एक ही ओर युग्म कोण बनते हैं।
- 3. पूरक कोण यदि दो कोणों का योग 90° हो तो उनमें से प्रत्येक कोण एक दूसरे का पूरक कोण कहलाता है।
- 4. सम्पूरक कोण यदि दो कोणों का योग 180° हो तो उनमें से प्रत्येक कोण एक दू सरे का सम्पूरक कोण कहलाता है।
- 5. वह रेखा जो दो या दो से अधिक दी गई रेखाओं को अलग-अलग बिन्दुओं पर प्रतिच्छेद करती है, तिर्यक रेखा कहलाती है।
- 6. एक तिर्यक रेखा किन्हीं दो रेखाओं को प्रतिच्छेद कर 8 कोण बनाती है जिनमें 4 अन्तःकोण एवं 4 बाह्य कोण होते हैं।
- 7. जब दो रेखाओं के। एक तिर्यक रेखा काटती है तो संगत कोण के चार युग्म, बाह्य एकातंर कोण के दो युग्म तथा अन्तःकोणों के दो युग्म बनते हैं।
- 8. एक ही तल में स्थित ऐसी रेखाएँ जो परस्पर प्रतिच्छेद न करें, समांतर रेखाएँ कहलाती है।
- 9. दो समांतर रेखाओं के बीच लम्बवत् दूरी सदैव एक समान रहती है।
- 10. यदि कोई तिर्यक रेखा दो समांतर रेखाओं को प्रतिच्छेद करे तो
 - (i) संगत कोण युग्म के दोनों कोण आपस में बराबर होते हैं।
 - (ii) एकान्तर कोण युग्म के दोनों कोण आपस में बराबर होते हैं।
 - (iii) तिर्यक रेखा के एक ही ओर बने अन्तःकोण सम्पूरक होते हैं। (अर्थात् उनका योगफल 1800 होता है।)
- 11. यदि दो रेखाओं को एक तिर्यक रेखा काटे और निम्नांकित में से कोई भी एक कथन सत्य हो -
 - (i) संगत कोणों के एक युग्म के कोण बराबर हैं।
 - (ii) एकांतर कोणों के एक युग्म के कोण बराबर हैं।
 - (iii) तिर्यक रेखा के एक ही ओर बने अन्तःकोण संपूरक हैं तो दी गई रेखाएँ परस्पर समांतर होती है।

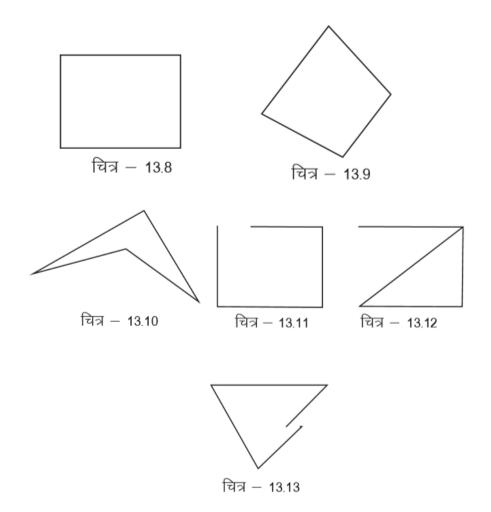
महत्वपूर्ण तथ्य -

एक रैखिक युग्म के कोण सम्पूरक कोण होते हैं परन्तु सम्पूरक कोणों का युग्म रैखिक युग्म होना आवश्यक नहीं है। कोई भी दो कोण जिनका योग 180° हो सम्पूरक कोण हैं। रैखिक युग्म होने के लिए उन्हें सरल रेखा के एक ही ओर होना चाहिए और साथ ही साथ उनकी दूसरी भुजा उभयनिष्ठ होनी चाहिए। जैसे 45° और 135° के कोण सम्पूरक तो हैं किन्तु रैखिक युग्म तभी होंगे जब वह एक ही रेखा पर एक ही तरफ बने होंगे।



अध्याय तेरह

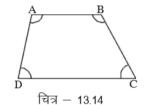
चतुर्भुज (Quadrilateral)


त्रिभुज के बारे में आप जानते हैं। आप अपने आसपास पतंग, फुटबॉल का मैदान, कबड्डी का मैदान एवं आपकी कॉपी-किताब का एक पेज के समान रचनाओं को रोज देखते है। उनमें कितनी भुजाएँ होती हैं? आपने और कहाँ-कहाँ इस प्रकार की रचनाओं को देखा है? लिखिए।

ऐसी ही आकृतियाँ नीचे दिये गये चित्रों में से छाँटिए –

ऊपर दिये गये चित्रों में से आपने चौकोरनुमा आकृतियों को ही छाँटा है। इन सभी आकृतियों को जिसमें चार भुजाएँ होती हैं, चतुर्भुज कहते हैं।

नीचे, कुछ आकृतियाँ दी गई हैं जिनमें से प्रत्येक चार भुजाओं से मिलकर बनी है। क्या ये सभी चतुर्भुज हैं? यदि नहीं है, तो क्यों? सोचिए।



चित्र 13.8, 13.9 एवं 13.10 में आप पाते हैं कि ये सभी चार भुजाओं से घिरी बन्द आकृतियाँ हैं तथा घिरे हुये क्षेत्र में चार कोण बन रहे हैं, इसलिए ये सभी चतुर्भुज हैं।

चित्र 13.11,13.12 एवं 13.13 बन्द आकृतियाँ नहीं हैं। इसलिये ये सभी चतुर्भुज नहीं हैं। इस प्रकार ''चार भुजाओं से घिरी बन्द आकृति जिसके अन्दर के भाग में चार कोण बनते हैं, चतुर्भुज कहलाती है।"

चतुर्भुज के अंग

चतुर्भुज ABCD में AB, BC, CD चार भुजाएँ हैं तथा A,B,C व D चार शीर्ष हैं। प्रत्येक शीर्ष दो भुजाओं को मिलाने से प्राप्त होता है तथा प्रत्येक शीर्ष पर एक-एक अन्तःकोण बन रहा है। इस प्रकार चार अन्तःकोण बन रहे हैं जिनके नाम क्रमशः ∠BAD, ∠ADC, ∠DCB एवं ∠CBA हैं।

क्रियाकलाप 1

नीचे दिये गये चित्रों में भुजाओं, शीर्षों तथा अन्तःकोणों को छांटकर उचित स्थान पर लिखिए-

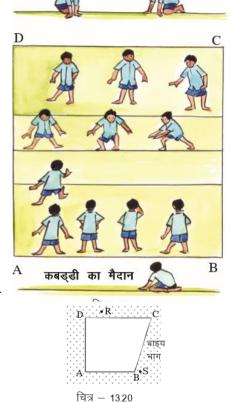
सारणी-1 चित्र.सं. शीर्षों के नाम भुजाओं के नाम चित्र कोणों के नाम (i) A (i) AB (i) ∠ADC या ∠CDA 13.15 (ii) B (ii) BC (ii) ∠DCB या ∠BCD (iii) C (iii) CD (iii) ∠CBA या ∠ABC (iv) D (iv) DA (iv) ∠BAD या ∠DAB (i) 13.16 अ (ii) (ii) (ii) (iii) (iii) (iii) (iv) (iv) (iv) 13.17 (ii) (ii) (ii) (iii) (iii) (iii) (iv) (iv) (iv)

चतुर्भुज का अन्तःभाग एवं बाह्यभाग

कबड्डी के मैदान से हम सभी परिचित हैं। संलग्न चित्र में कबड्डी के मैदान में खिलाड़ी खेलते हुए दिखाई दे रहे हैं। क्या आप बता सकते हैं कि मैदान के अन्दर कितने खिलाड़ी है?

चित्र में आप देख रहे हैं कि कुछ खिलाड़ी मैदान के बाहर भी हैं। उनकी संख्या 3 है।

कबड्डी का मैदान ABCD क्या एक चतुर्भुज है?


संलग्न चित्रों में चतुर्भुज के घेरे के अन्दर का भाग

चतुर्भुज का अन्तःभाग कहलाता है। चित्र 13.19 में चतुर्भुज के अन्तःभाग में बिन्दु च् और फ दिखाया गया है।

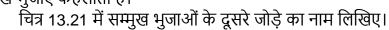
तल का वह भाग जो चतुर्भुज के बाहर रहता है, चतुर्भुज का बाह्य भाग कहलाता है। चित्र 13.20 में चतुर्भुज के बाह्य भाग में बिन्दु R व

S दिखाया गया है।

आपकी पुस्तक के किसी पृष्ठ पर लिखे गये अंक एवं अक्षर आदि पृष्ठ के किस भाग में स्थित हैं?

अंतः भाग-

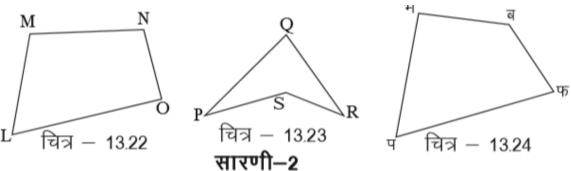
•Q


संलग्न भुजाएँ एवं सम्मुख भुजाएँ

संलग्न चित्र 13.21 में आप देखते है कि शीर्ष P पर SP और QP रेखा खण्ड (भुजाएँ) मिल रहे हैं। इसी प्रकार

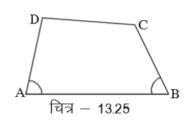
शीर्ष Q पर PQ और RQ भुजाएँ मिलती हैं। चतुर्भुज की भुजाएँ जो किसी एक बिन्दु (शीर्ष) पर एक दूसरे को मिलती (काटती) हैं, संलग्न

भुजाएँ कहलाती हैं।


यहाँ पर RS एवं PS संलग्न भुजाएँ हैं, जो शीर्ष Q पर मिलती हैं। शीर्ष Q एवं शीर्ष R पर मिलने वाले संलग्न भुजाओं के नाम लिखिए। चित्र 13.21 में PQ एवं RS भुजाएँ परस्पर नहीं मिलती, ये भुजाएँ सम्मुख भुजाएँ कहलाती हैं।

क्रियाकलाप 2

नीचे दिए गये चित्रों में संलग्न भुजाओं के जोड़ों को पहचान कर उनके शीर्ष के साथ सारणी में लिखिए



चित्र क्रमांक	आसन्न भुजाओं के नाम	उभयनिष्ठ शीर्ष	सम्मुख भुजाओं के
144 %-114	ontin gonon de and	0.141.1-0 (114	नाम
13.22	(i)		(i)
	(ii)		
	(iii)		(ii)
	(iv)		
13.23	(i)		(i)
	(ii)		
	(iii)		(ii)
	(iv)		
13.24	(i)		(i)
	(ii)		
	(iii)		(ii)
	(iv)		

संलग्न कोण एवं सम्मुख कोण

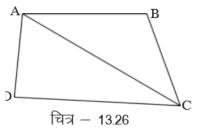
हम पढ़ चुके हैं कि चतुर्भुज में चार अन्तःकोण होते हैं। इनमें ऐसे दो कोण संलग्न कोण कहलाते हैं जिनमें चतुर्भुज की एक भुजा उभयनिष्ठ होती है।

संलग्न चित्र 13.25 में ∠A, भुजा AB एवं DA पर बना है तथा ∠B भुजा AB व AC पर बना है। इसमें भुजा 1ठ उभयनिष्ठ है। अतः ∠A एवं ∠B संलग्न कोण हैं।

क्या ∠A का और कोई संलग्न कोण है?

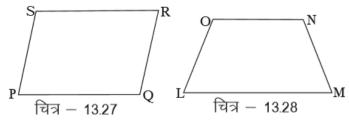
इसी प्रकार $\angle B$, $\angle C$ एवं $\angle D$ के संलग्न कोणों के नाम लिखिए।

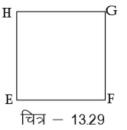
उपरोक्त चित्र 13.25 में $\angle B$ के दो संलग्न कोण $\angle A$ व $\angle C$ हैं, किन्तु $\angle D$, $\angle B$ का संलग्न कोण नहीं है।


अतः चतुर्भुज के ऐसे दो कोण, जो संलग्न न हों, सम्मुख कोण कहलाते हैं। चित्र 13.25 में $\angle B$ का सम्मुख कोण, $\angle D$ है और $\angle C$ का सम्मुख कोण, $\angle A$ है। सम्मुख कोण आमने-सामने होते हैं।

चतुर्भुज के विकर्ण एवं अन्तःकोणों का योग

ABCD एक चतुर्भुज है। इसके कोई दो सम्मुख शीर्षों को एक रेखाखण्ड द्वारा मिलाने से चतुर्भुज दो त्रिभुजों में विभाजित हो जाता है।


रेखाखण्ड AC चतुर्भुज ABCD का विकर्ण कहलाता है। यह सम्मुख शीर्षों A व C को मिलाने से बना है।


इसी प्रकार रेखाखण्ड़ BD भी विकर्ण होगा।

क्रियाकलाप 3

निम्न चतुर्भुज में विकर्ण खींचकर उनके नाम बताइए -

(1) ----(1) (2) ----(2)

-----(1)

-(1) -------(2) -----

आप देख चुके हैं कि चतुर्भुज में विकर्ण चतुर्भुज को दो त्रिभुजों में बाँटता है। चित्र

13.26 में विकर्ण AC चतुर्भुज ABCD को दो त्रिभुजों ΔABC और ΔADC में बाँटता है। आप जानते हैं कि त्रिभुज के तीनों कोणों का योग 180° होता है। चतुर्भुज ABCD के सभी कोणों का योग = ΔABC के सभी कोणों का योग + ΔADC के सभी कोणों का योग

अतः चतुर्भुज के चारों अन्तः कोणों का योग 360° होता है।

क्रियाकलाप 4

नीचे दिये गये चित्रों में चतुर्भुज के अन्तः कोणों का माप चाँदें की सहायता से ज्ञात करके उनका योगफल प्राप्त कीजिए -

सारणी–3

= 180° + 180°

= 360°

चित्र.	चित्र	चारो अन्तःकोणों का माप	चारों अंतः कोणों का
स.			योग
13.30	В	∠BAD =	
	A	∠ADC =	
	C	∠DCB =	
	D	∠CBA =	
13.31	P	∠QPS =	
		∠PSR =	
		∠SRQ =	
	S ^L R	∠RQP =	
13.32	LM	∠MLK =	
		∠LKN =	
		∠KNM =	
	K——/N	∠NML =	

उपरोक्त तालिका से आप किस निष्कर्ष पर पहुंचतें हैं ? अपनी कापी में लिखिए। ऐसे ही कई और चतुर्भुज बनाकर अपने निष्कर्ष की जाँच कीजिए।

दिये गये चतुर्भुजों में तीन अन्तःकोणों की माप दी गई है। चौथे कोण की माप ज्ञात करके रिक्त स्थानों की पूर्ति कीजिए —

सारणी-4

चित्र	चतुर्भुज	हल करने के चरण	अज्ञात कोण
सं.			x
13.33	P	∠P = 90°	95°
	900	∠Q = 80°	
	S x^0 80^0 Q 95^0	∠R = 95°	
	R	अत: ∠S = 360 – (∠P + ∠Q +∠R)	
	K	$= 360^{\circ} - (90^{\circ} + 80^{\circ} + 95^{\circ})$	
		= 360° - 265° = 95°	
13.34	A// B	∠A = ∠B =	
	A 135° 45° B	∠D =	
	$D \xrightarrow{45^{\circ}} x^{\circ} C$	अत:∠C = 360° – (∠D + ∠A + ∠B)	
10.05	E		
13.35	G	∠H =	
	30° F 259	∠G =	
	75°	∠E =	
	H		
	**		
13.36	U_90° x	∠U =	
		∠X =	
	$X = 90^{\circ}$ 50° W	∠W =	

उदाहरण 1. चतुर्भुज ABCD में तीन कोणों की माप आपस में बराबर हैं। यदि चौथे कोण की माप 60° हो, तो शेष तीनों कोणों की माप ज्ञात कीजिए।

हल: माना कि
$$\angle B = \angle C = \angle D = x^\circ$$

तो $\angle A + \angle B + \angle C + \angle D = 360^\circ$
 $\Rightarrow 60^\circ + x + x + x = 360^\circ$ [खिदया है कि $\angle A = 60^\circ$]
 $\Rightarrow 60^\circ + 3x = 360^\circ$
 $\Rightarrow 3x = 360^\circ - 60^\circ$ [60° का

पक्षांतर करने परा

$$3x = 300^{\circ}$$
"
 $3x = 300^{\circ}$
 $3x = 300^{\circ} = 100^{\circ}$ (दोनों पक्षों में 3 का भाग करने पर)
 $x = 100^{\circ}$

उदाहरण 2. किसी चतुर्भुज में दो कोणों का योगफल 150° है। शेष अन्य दो कोणों में से एक कोण 130° हो, तो चौथे कोण का मान बताइए।

दिया गया है कि दो कोणों का योग $= 150^{\circ}$ हल: शेष अन्य दो कोणों का योग $= 360^{\circ} - 150^{\circ}$ ख़्चतुर्भुज के सभी कोणों का योग $= 360^{\circ}$ । $= 210^{\circ}$ अतः चौथा कोण $=210^{\circ}-130^{\circ}$ $= 80^{\circ}$

उदाहरण 3. एक चतुर्भुज के कोणों में 1 : 2 : 3 : 4 का अनुपात है तो प्रत्येक कोण का मान ज्ञात कीजिए। माना कि चतुर्भुज के कोण क्रमशः x, 2x, 3x और 4x है। हल:

चतुर्भुज के चारों कोणों का योग = 360°

$$\Rightarrow x + 2x + 3x + 4x = 360^{\circ}$$

$$\Rightarrow 10x = 360^{\circ}$$

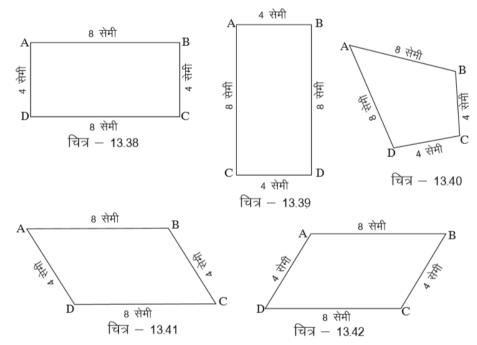
$$\Rightarrow x = 360^{\circ}$$

$$\Rightarrow x = 36^{\circ}$$

चतुर्भुज का पहला कोण $= x = 36^{\circ}$ दूसरा कोण $= 2x = 2 \times 36^{\circ} = 72^{\circ}$ तीसरा कोण $= 3x = 3 \times 36^{\circ} = 108^{\circ}$ एवं चौथा कोण $= 4x = 4 \times 36^{\circ} = 144^{\circ}$

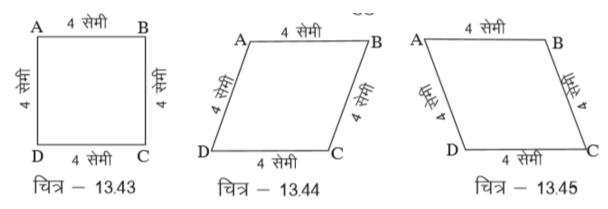
प्रश्रावली 13.1

- Я.1. रिक्त स्थानों की पूर्ति कीजिए -
 - किसी चतुर्भुज में ----- विकर्ण होते हैं। (अ)
 - किसी चतुर्भज का विकर्ण, चतुर्भुज को दो ------ में बांटता है। (ৰ)
 - चतुर्भुज के सभी अन्तःकोणों का योग ----- अंश होता है।
- चतुर्भुज में सम्मुख कोणों के ----- जोड़े बनते हैं। (द)
- किसी चतुर्भुज में ----- शीर्ष होते हैं, जिनमें कोई ----- शीर्ष एक सरल रेखा में नहीं होते। दिये गये कोणों में अन्तःकोणों के मान के आधार पर कौन-कौन सा समूह किसी चतुर्भुज के लिए संभव हो सकते हैं:-
 - (i)
- (ii) 75°, 75°, 75° एवं 135°
- 60°, 70°, 80° एवं 145° 102°, 150°, 40° एवं 68°
- (iv) 90°, 90°, 90° एवं 90°
- प्र.3. एक चतुर्भुज के दो कोण एक दूसरे के संपूरक हैं। यदि शेष कोणों में एक कोण 65व का हो तो चौथे कोण का मान ज्ञात कीजिए।
- प्र.4. किसी चतुर्भुज में दो कोण प्रत्येक 70° के है तथा शेष दो कोण बराबर है तो बराबर कोणों में प्रत्येक का मान ज्ञात कीजिए।
- किसी चतुर्भुज के सभी कोणों के माप बराबर हैं तो प्रत्येक कोण का माप ज्ञात कीजिए।


- प्र.6. किसी चतुर्भुज के दो कोण क्रमशः 65° एवं 105° के हैं। शेष दो कोण आपस में बराबर हैं। बराबर कोणों में प्रत्येक का मान ज्ञात कीजिए।
- प्र.7. किसी चतुर्भुज के कोणों का अनुपात 3: 5: 7: 9 है। उसके प्रत्येक कोण की माप ज्ञात कीजिए।
- प्र.८. सत्य या असत्य कथन छाँटिए -
 - (i) चतुर्भुज के चारों अन्तः कोणों का योग चार समकोण होता है।
 - (ii) चतुर्भुज का एक विकर्ण चतुर्भुज को चार त्रिभुजों में बांटता है।
 - (iii) चतुर्भुज में संलग्न कोणों के चार युग्म होते हैं।
 - (iv) चतुर्भुज में सम्मुख कोणों के चार युग्म बनते हैं।
 - (v) चतुर्भज के चारों कोणों में से प्रत्येक 90° का नहीं हो सकता।
- प्र.9. एक चतुर्भुज के तीन कोण प्रत्येक 80° के बराबर हैं। चौथा कोण ज्ञात कीजिए।

चतुर्भुज के प्रकार

स्केल की सहायता से नीचे दिये माप के बराबर, झाड़ू की सींके लीजिए तथा सिरे से सिरे को मिलाते हुए विभिन्न आकृतियों वाले चतुर्भुज बनाइये -

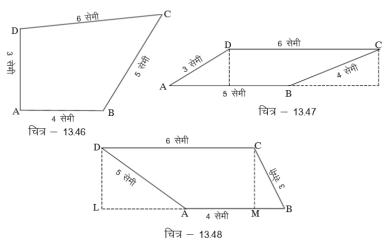

(i) 8 सेमी, 4 सेमी, 8 सेमी एवं 4 सेमी दिये गये मापों से बनने वाले चतुर्भुजों की कुछ आकृतियाँ आगे दी गई हैं –

इनमें से आकृति 13.38 13.39, 13.41, 13.42 ऐसी हैं जिनकी आमने-सामने की भुजाएँ परस्पर समान्तर एवं बराबर हैं। ये समान्तर चतुर्भुज कहलाते हैं।

अतः वह चतुर्भुज जिसकी सम्मुख भुजाएँ परस्पर समान्तर एवं बराबर हों, समान्तर चतुर्भुज (Parallelogram) कहलाती हैं। आकृति 13.38 एवं 13.39 समान्तर चतुर्भुज हैं जिसका प्रत्येक कोण 90° है। इन्हें आयत कहते हैं। अतः **वह समान्तर चतुर्भुज जिसका प्रत्येक कोण 90° का हो, आयत** (Rectangle)**कहलाता है।** आकृति 13.40 में न तो सम्मुख भुजाएँ समान्तर हैं और न ही बराबर। अतः यह समान्तर चतुर्भुज नहीं है।

(ii) प्रत्येक 4 सेमी लम्बाई की चार सींके लेकर चतुर्भुज बनाइये –

आपके द्वारा बनाये चतुर्भुजों में से कुछ चतुर्भुज उपरोक्त आकृतियों की भाँति होंगे। क्या ये चतुर्भुज समान्तर चतुर्भुज हैं?


आप पायेंगे कि इन सभी आकृतियों में सम्मुख भुजाएँ परस्पर समान्तर एवं बराबर हैं। अतः ये सभी समान्तर चतुर्भुज हैं। इन चतुर्भुजों की सभी भुजाएँ समान है, इसलिए ये एक विशेष प्रकार के समान्तर चतुर्भुज है।

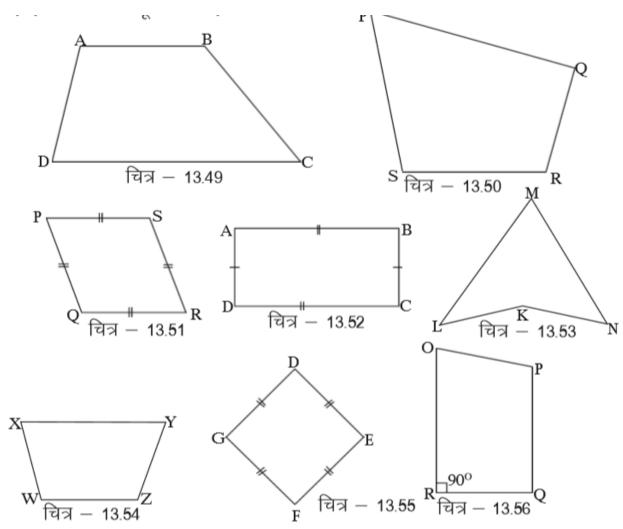
इस प्रकार वह समान्तर चतुर्भुज जिसकी प्रत्येक भुजा बराबर हो, समचतुर्भुज (Rhombus) कहलाता है।

आकृति 13.43 भी समचतुर्भुज है, इसकी सभी भुजाएँ समान तो है ही साथ ही इसमें कुछ और विशेषता भी है। इस चतुर्भुज का प्रत्येक कोण 90° का है।

ऐसे समचतुर्भुज जिसकी प्रत्येक भुजा समान हो तथा प्रत्येक कोण 90° का हो, वर्ग (Square) कहलाता है। अतः वर्ग एक विशेष प्रकार का समचतुर्भुज है।

(iii) अब क्रमशः 3 सेमी, 4 सेमी, 5 सेमी एवं 6 सेमी लम्बाई वालें सींकें लेकर सिरे से सिरे मिलाकर विभिन्न चतुर्भुज बनाइये। आपके द्वारा बनाये गये चतुर्भुज में से कुछ इस प्रकार हो सकते हैं -

सींकों की सहायता से दी गई मापों से और भी चतुर्भुज आप बनाइये।


आकृति 13.46 में प्रत्येक भुजा अलग-अलग माप की हैं तथा सम्मुख भुजाएँ समान्तर भी नहीं हैं। यह विषमबाह चतुर्भुज है।

आकृति 13.47 एवं 13.48 में चतुर्भुज की केवल दो सम्मुख भुजाएँ (AB व DC) समान्तर हैं जो अलग-अलग माप की हैं। इन्हें **समलम्ब चतुर्भुज** कहते हैं। इनके शीर्ष बिन्दु से सम्मुख भुजा पर डाले गये लम्ब की लम्बाई एक समान होती है।

अतः वह चतुर्भुज जिसकी सम्मुख भुजाओं का एक जोड़ा समान्तर हो, समलम्ब चतुर्भुज (Trapezium) कहलाता है।

क्रियाकलाप 5

नीचे दिये गये चित्रों में से आयत, वर्ग, समचतुर्भुज, समलम्ब चतुर्भुज, विषम बाहु चतुर्भुज छाँटिए एवं तालिका में पूर्ति कीजिए –

सारणी–5

चित्र क्रमांक	समान्तर भुजाओं के नाम	बराबर भुजाओं के नाम	चतुर्भुज का प्रकार
13.49	AB DC	कोई भी नहीं	समलंब चतुर्भुज
13.50			
13.51	***************************************		
13.52	***************************************		
13.53	***************************************	***************************************	
13.54	***************************************	***************************************	
13.55	***************************************	***************************************	
13.56			

(i)	यदि किसी चतुर्भुज की सम्मुख भुजाओं का केवल एक जोड़ा समान्तर हो, तो उसे
	चतुर्भुज कहते हैं।
(ii)	आयत का प्रत्येक कोण अंश का होता है।
(iii)	समचतुर्भुज में सम्मुख भुजाएँ परस्पर होती है एवं चारों भुजाएँ आपस में
	होती हैं।
(iv)	जिस समान्तर चतुर्भुज की प्रत्येक भुजा बराबर हो एवं जिसका प्रत्येक कोण 90व् का
	(ii) (iii)

हो, वह कहलाता है। (v) वह चतुर्भुज जिसकी सभी भुजाएँ आपस में बराबर हों, चतुर्भुज हैं।

सत्य/असत्य कथन छाँटिए -ਸ਼.2.

- (i) आयंत एक समान्तर चतुर्भुज है। (ii) प्रत्येक समान्तर चतुर्भुज एक आयत होता है। (iii) प्रत्येक समचतुर्भुज एक वर्ग है।
- (iv)पतंग एक चतुर्भुज है।
- (v)समलम्ब चतुर्भुज की सम्मुख भुजाएँ परस्पर समान्तर होती हैं।
- निम्नांकित चतुर्भुजों का चित्र बनाकर नामांकित करें -Я.З.
 - (i) समलम्ब चतुर्भुज
- (ii) आयत

(iii) वर्ग

(iv) समान्तर चतुर्भुज

हमने सीखा

- 1. चार भुजाओं से घिरी बन्द आकृति जिसके अन्दर के भाग में चार कोण बनते हैं, चतुर्भुज कहलाती है।
- 2. किसी चतुर्भुज में चार शीर्ष, चार भुजाएँ तथा चार कोण होते हैं।
- चतुर्भुज के सम्मुख शीर्षों को मिलाने वाले रेखाखण्ड विकर्ण कहलाते हैं। चतुर्भुज में दो विकर्ण होते हैं।
- 4. चतुर्भुज की वे दो भुजाएँ, जिसमें एक शीर्ष उभयनिष्ठ होता है, संलग्न भुजाएँ कहलाती हैं।
- 5. चतुर्भुज में वे दो भुजाएँ जिनमें कोई भी शीर्ष उभयनिष्ठ नहीं होता, सम्मुख भुजाएँ कहलाती हैं।
- 6. चतुर्भुज ABCD के अन्तः भाग, चतुर्भुज की परिसीमा (स्वयं चतुर्भुज) के साथ मिलकर चतुर्भुजीय क्षेत्र ABCD बनाता है।
- 7. चतुर्भुज के चारों अन्तःकोणों का योग 360° होता है।
- 8. समान्तर चतुर्भुज की सम्मुख भुजाएँ परस्पर समान्तर एवं बराबर होती हैं।
- 9. वह समान्तर चतुर्भुज, जिसका प्रत्येक कोण 90व^o का हो, आयत कहलाता है।
- 10. वह समान्तर चतुर्भुज, जिसकी सभी भुजाएँ बराबर हों, समचतुर्भुज कहलाता है।
- 11. वह चतुर्भुज, जिसकी सम्मुख भुजा का एक युग्म परस्पर समान्तर हो, समलम्ब चतुर्भुज कहलाता है।
- 12. वह समान्तर चतुर्भुज जिसकी सभी भुजाएं बराबर हों और प्रत्येक कोण 90° का हो, वर्ग कहलाता है।

अध्याय चौदह

समानुपात (Proportion)

शैली के पास बेर थे तथा मिश्री के पास अंगूर। दोनों ने बेर एवं अंगूर आपस में बांटना तय किया। शैली ने मिश्री को अपने 24 बेरों में से 12 बेर दिए और मिश्री ने शैली को अपने 150 अंगूर में से 75 अंगूर दिए। बंटवारे को समझ नहीं पा रहे थे। मिश्री कह रही थी कि तुमने मुझे कम बेर दिए। शैली की बात मिश्री ने नहीं मानी और दोनों अपनी बुआ निशा के पास गयी। निशा ने शैली से कहा कि आपके पास कुल 24 बेर थे। मिश्री को मिले 12 अतः आप दोनों के बेरों में अनुपात हुआ 12: 12 या 1: 1

उसी प्रकार मिश्री ने 150 अंगूर में से 75 अंगूर शैली को दिए हैं। शैली एवं मिश्री को मिले अंगूरों में अनुपात 75: 75 या 1: 1 है अर्थात् बँटवारा ठीक हुआ है। क्या निशा की बात सही है ? इस स्थिति में दोनों को मिले फलों का अनुपात बराबर है। यहाँ फलों का जो बँटवारा हुआ उसमें बेरों का बंाटना बराबर 12: 12 के अनुपात में हुआ और अंगूरों का 75: 75 के अनुपात में। ये दोनों अनुपात एक समान हैं अर्थात् समानुपाती हैं। ऐसी ही स्थितियों में हमें कभी-कभी अनुपातों की तुलना करने की आवश्यकता होती है। आइए कुछ उदाहरण देखें -

उदाहरण 1. दूध के 10 पैकेट का मूल्य 150 रू. एवं 25 पैकेट का मूल्य 375 रू. है। यहां दूध के पैकेटों की संख्या में अनुपात = 10: 25 = 2: 5 दूध की कीमत का अनुपात = 150: 375 = 2: 5 ये दोनों अनुपात समान है।

उदाहरण 2. पांच बोरे सीमेंट की कीमत 550 रू. एवं 20 बोरे सीमेंट की कीमत 2200 रू. है। सीमेंट के बोरों की संख्या में अनुपात = 5: 20 = 1: 4 सीमेंट की कीमत में अनुपात = 550: 2200 = 1: 4 बोरों की संख्या में अनुपात त्र कीमत में अनुपात 1: 4 = 1: 4

> यहां भी दोनों अनुपात बराबर हैं। ये भी अनुपात समान हैं अतः इन्हें समानुपात कहेंगे। क्या 4: 5 एवं 20: 25 भी आपस में बराबर है ?

आप भी चार उदाहरण बताइए जिनमें दो राशियों का अनुपात अन्य दो राशियों के अनुपात

के समान हो।

कीजिए।

आप भी इस प्रकार की कुछ परिस्थितियों के बारे में सोचिए तथा उनके अनुपातों की तुलना

यदि दो राशियाँ a और b के बीच का अनुपात अन्य दो राशियों c और d के बीच के अनुपात के बराबर हो तो a:b=c:d:a:b::c:d लिखते हैं जिसमें :: समानुपात का चिह्न है। a:b::c:d में a तथा d बाह्य पद कहलाते हैं एवं b तथा c मध्य पद कहलाते हैं। a. b. c व d क्रमशः प्रथम, द्वितीय, तृतीय, चतुर्थ पद कहलाते हैं। जाँचकर देखें कि चारों पदों में पहले दो पदों का अनुपात तीसरे एवं चौथे पदों के अनुपात के बराबर है अथवा नहीं।

1. 1: 5 एवं 6: 30

2. 20: 10 एवं 30: 15

3. 4: 12 एवं 18: 54

क्या उपरोक्त सभी उदाहरण समानुपात में है ? निम्न सारिणी में जहाँ रिक्त पद हैं उन्हें समानुपात के नियम के आधार पर भरिए।

सारणी 1

क्र.	समानुपाती पद	बाह्य पदों का गुणनफल	मध्य पदों का गुणनफल
1	1:2::4:8	1 × 8 = 8	2 × 4 = 8
2	5:6::75:90		
3	3 : 4 :: 24 : 32		96
4	2.5 : 2.4 :: 7.5 : 7.2	2.5 × 7.2 =	= 18
5	2:5::4:—		20

उपरोक्त उदाहरणों में आप पायेंगे कि बाह्य पदों का गुणनफल मध्यपदों के गुणनफल के बराबर होता है। समानुपात में मध्यपदों का गुणनफल = बाह्य पदों का गुणनफल

क्रियाकलाप 1

दो सहेलियाँ हमीदा और अनु पतंग लेने बाजार गई। उन्होंने 45 पतंगें 15 रु में खरीदी। 15 रु में से 9 रु अनु ने तथा 6 रु हमीदा ने दिए। वे जब बाजार से घर आई तो अनु ने पतंग का बँटवारा कुछ इस प्रकार से किया - दो पतंगें तुम्हारे लिए, तीन पतंगे मेरे लिए। आप बताइए कि -

- 1. अनु किस अनुपात में पतंग बाँट रही है ?
- 2. हमीदा सोच रही है कि अनु पतंग का बँटवारा ठीक नहीं कर रही। हमें बराबर-बराबर पतंगें मिलनी चाहिए। अनु कहती है कि हमने पतंग के मूल्यों का भुगतान 6: 9 अथवा 2: 3 मे किया है इसलिए प्रत्येक 5 पतंगों में से दो पतंगें तुम्हारी तथा तीन पतंगें मेरी होगी। कुल 45 पतंगें है इसलिए 2 x 9 = 18 पतंगें तुम्हें तथा 3 x 9 = 27 पतंगें मुझे मिलेंगी। क्या अनु का तर्क सही है? अपने उत्तर का कारण भी बताइये।

60 : 45 = 60 / 45 = 4 / 3 = 4 : 3 अतः 40 % 30 %% 60 % 45

इसलिए 40, 30, 60, 45 समानुपाती हैं।

उदाहरण 4. समानुपात के प्रश्नों में अज्ञात पद का मान ज्ञात करना

8 % _____ %% 7 % 14

इस उदाहरण में दूसरा पद ज्ञात नहीं है। इस स्थान पर ग लिखने पर समानुपात होगा

8 % *x* %% 7 % 14

अतः बाह्य पदों का गुणनफल त्र मध्य पदों का गुणनफल

$$8 \times 14 = x \times 7$$

$$7x = 112$$

$$x = \frac{112}{7} = 16$$

गर्मी के दिनों में हम शर्बत बनाते हैं। शर्बत में शक्कर मिलाई जाती है। यदि 6 गिलास शर्बत में 12 चम्मच शक्कर मिलाई गई तो प्रति गिलास 2 चम्मच शक्कर डाली गई है और अधिक मीठा शर्बत बनाने के लिए यदि प्रति गिलास 3 चम्मच शक्कर डालें तो दोनों प्रकार के शर्बत में प्रति गिलास शक्कर का अनुपात 2: 3 होगा।

इस प्रकार दैनिक जीवन में अनुपात एवं समानुपात के बहुत से उदाहरण हैं। आप दैनिक जीवन से इससे सम्बन्धित तीन उदाहरण सोच कर बताएं। ध्यान रखें कि अनुपात समान इकाई में दर्शाई गई दो समान राशियों के बीच ही दर्शाया जाता है।

उदाहरण 5. यदि **100 x 75 = 150 x 50** जाँच कीजिए कि क्या **100, 150** तथा **50, 75** समानुपाती हैं।

हल: 100/150 = 2/3 = 2 % 3

50/75 = 2/3 = 2:3

स्पश्ट है 100: 150:: 50: 75

अतः संख्याएँ 100, 150, 50, 75 समानुपात में है।

उदाहरण 6. एक विद्यालय के खेल के मैदान की लम्बाई और चौड़ाई में 4: 3 का अनुपात है। यदि लम्बाई 28 मीटर हो तो चौड़ाई ज्ञात कीजिए।

हल: माना कि मैदान की चौड़ाई x है।

4: 3 और 28: x एक जैसे अनुपात हैं।

अतः 4 % 3 %% 28 % x

बाह्य पदों का गुणनफल = मध्य पदों का गुणनफल

$$4 \times x = 3 \times 28$$

$$x = 3 \times 28/4$$

 $x = 21$ मीटर

उदाहरण 7. 2 किलो टमाटर का मूल्य 16 रू है। ज्ञात कीजिए कि 40 रू में कितने किलो टमाटर आएंगे।

हल: माना कि 40 रूपये में x किलो टमाटर आएंगे

2: x और 16: 40 (2 किलो और x किलो तथा 16 रु. और 40 रु. एक जैसे हैं)

अतः 40 रूपये में 5 किलो टमाटर आएंगे।

उदाहरण 8. 1: 4 = 8: 32 से कितने समानुपात बनाए जा सकते हैं।

निम्न समानुपात बन सकते हैं-हल:

- 1- [1:4::8:32] 1 x 32 = 4 x 8
- 2. 1:8::4:32, $1 \times 32 = 8 \times 4$
- $3 \quad 32 : 8 :: 4 : 1, \qquad 32 \times 1 = 8 \times 4$

4 32 : 4 :: 8 : 1 32 x 1 = 4 x 8 उपरोक्त संख्याओं से क्या कुछ और

समानुपात बन सकते हैं?

प्रश्रावली 14.1

1.समानुपात के नियम को लागू करते हुए बताइए कि निम्न में से कौन सा कथन सत्य है और क्यों?

- 10:20::300:600 -----(i)
- (ii) 38 : 76 :: 250 : 500 -----
- (iii) 22:66:66:22
- (iv) 24 : 96 :: 16 : 54
- (v) 25 : 65 :: 1 : 3
- (vi) 15 : 30 :: 200 : 400
- (vii) 34 : 136 :: 45 : 180
- (viii) 70:350::1:4
- (ix)5 : 25 :: 30 : 150
- (x)33 : 11 :: 133 : 111
- (xi)18:24::15:20
- (xii)75 : 150 :: 3 : 18

2. निम्न में से कौन-कौन से संख्या समूह समानुपाती हैं? यदि समानुपाती नहीं हैं तो क्या यह संभव है कि क्रम बदल कर व उन्हें पुनः व्यवस्थित कर समानुपाती बनाया जा सके? किनमें यह भी नहीं किया जा सकता?

(i) 4, 8, 16, 32 (ii) 12, 16, 48, 64

(iii) 4, 6, 18, 12

(iv) 200, 300, 400, 600

(v) 11, 22, 88, 44 (vi) 4, 1, 2, 8

(vii) 25, 15, 3, 5 (viii) 224, 34, 68, 112

(ix) 67, 134, 45, 90

(x) 1, 2, 3, 6, 3, 6

(*x*i) 5, 7, 9, 13

3.रिक्त स्थानों को इस प्रकार भरें कि दोनों पक्षों के अनुपात समान हों।

(i)32: --- = 6: 12

(ii)22 किग्रा: 26 किग्रा = ---: 260 मीटर

(iii)45 किमी: 60 किमी = ---: 12 घंटे

- 4. 8 किलोग्राम चीनी का मूल्य 72 रू. है तो 15 किलोग्राम चीनी का मूल्य ज्ञात कीजिए।
- 5. किसी मैदान की लम्बाई एवं चौड़ाई का अनुपात 5: 2 है मैदान की लम्बाई मीटर में ज्ञात कीजिए, यदि चौड़ाई 40 मीटर है।
- 6. किसी व्यक्ति ने एक पुस्तक की तीन प्रतियां 75 रु में खरीदी। बताइए कि 300 रु में वह व्यक्ति पुस्तक की कितनी प्रतियां खरीद सकता है?

ऐकिक विधि

दी गई राशियों से पहले एक राशि का इकाई मान ज्ञात कर फिर वांछित संख्या में राशियों का मान ज्ञात करने की विधि को ऐकिक विधि कहा जाता है। आपने इसे पूर्व कक्षाओं में पढ़ा है। समान अनुपात के प्रश्नों को ऐकिक विधि से भी किया जा सकता है।

उदारहण 9. यदि दो कॉपियाँ की कीमत 20 रू हो तो 5 कापियों की कीमत क्या होगी?

समानुपात के द्वारा हल-

दो कॉपियों की कीमत 20 रु है अर्थात् कॉपियों तथा कीमत का अनुपात = 2: 20 तो 5 कॉपियों तथा उनकी कीमत का अनुपात भी वहीं होगा। यदि 5 कॉपियों की कीमत x रख लें तो

कॉपियाँ: कीमत = कॉपियाँ: कीमत

2: 20 = 5: x
चूंकि मध्य पदों का गुणनफल = बाह्य पदों का गुणनफल

$$5 \times 20 = x \times 2$$
 $100 = 2x$
 $x = 50$

अर्थात् 5 कॉपियों की कीमत 50 रू होगी।

ऐकिक विधि के द्वारा हल -

दो कॉपियों की कीमत 20 रू है

तो 1 कॉपी की कीमत होगी = 10 रु

अब 1 कॉपी की कीमत 10 रु है

तो 5 कॉपियों की कीमत = 10 x 5 = 50 रु

इस प्रकार के कुछ अन्य सवाल प्रश्नावली में दिए गए है। इन्हें हल कीजिए।

प्रश्नावली 14.2

- 1. तीन कॉपियों की कीमत 16.50 रू. है। तो 7 कॉपियों की कीमत ज्ञात कीजिए।
- 2. एक कार 3 घंटों में 165 किलोमीटर चलती है। तो वह कार,
 - (i) 440 किलोमीटर की दूरी कितने समय में तय करेगी ?
 - (ii) 6¹/₂ घंटों में कितनी दूरी तय करेगी ?
- 3. 72 किताबों का वज़न 9 किलोग्राम है।
 - (i) 80 किताबों का वज़न ज्ञात कीजिए।
 - (ii) कितनी किताबों का वज़न 6 किलोग्राम होगा?
- 4. किसी मज़दूर की 25 दिनों की आय 1500 रु. है। उसकी 30 दिनों की आय ज्ञात कीजिए।
- 5. यदि 22 मीटर कपड़े का मूल्य 704 रु है तो 20 मीटर कपड़े का मूल्य क्या होगा ?
- 6. सारिणी पूरी कीजिए:

किताबों की संख्या	मूल्य (रुपये में)
50	2500
75	_
_	100
_	3000

हमने सीखा

- 1. दो अनुपातों में समता समानुपात कहलाता है। यदि a: b और c : d बराबर या समान हैं, तो यह समानुपात बनाते हैं।
- 2. समानुपात में पहले तथा चौथे पद को बाह्यपद तथा दूसरे तथा तीसरे पद को मध्यपद कहते हैं।
- 3. जब चार संख्याएँ समानुपात में हो तो बाह्यपदों का गुणनफल त्र मध्यपदों का गुणनफल
- 4. यदि हमें पता है कि a : b और c : d एक समान हैं तो उससे निम्न समानुपात बन सकते हैं-

अ. a:b::c:d

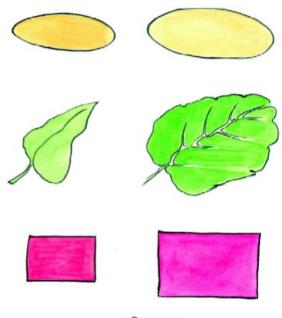
ब. b:a::d:c

₹. c:a::d:b

द. b:d::a:c

5. दी गई राशियों से पहले एक राशि का इकाई मान ज्ञात कर फिर वांछित संख्या में राशियों का मान ज्ञात करने की विधि को ऐकिक विधि कहा जाता है।

अध्याय पन्द्रह


क्षेत्रफल (AREA)

क्षेत्रफल (AREA)

सभी बंद आकृतियों के अंदर कुछ जगह होती है। इन आकृतियों के बाहर स्थित किसी बिंदु से इनके अंदर स्थित किसी बिंदु तक आकृति की रेखा को काटे बिना नहीं जा सकते। बंद आकृतियों के अंदर की जगह ही उसका क्षेत्र हैं। कुछ आकृतियों में ज्यादा जगह होती है। जिनमें ज्यादा जगह होती है वही बड़ी होती है।

नीचे आकृतियों के जोड़ों में पहचानें। कौन ज्यादा जगह घेरती है? दोनों आयतों में से कौनसा आयत बड़ा है? सभी में से बड़ी आकृति पहचानिए।

चित्र-15.1

उपरोक्त चित्रों में आपने देखा कि छोटी या बड़ी आकृति का होना किसी तल में उस आकृति द्वारा कम या अधिक जगह घेरने से है।

किसी समतल पर कोई वस्तु/आकृति कितनी जगह घेरती है, उसका माप कैसे करें? एक तरीका निम्न प्रकार से है। इसमें यह देखा जाता है कि किसी आकृति में एक निश्चित माप की कितनी छोटी आकृतियां आएंगी। पत्तियों, पंखुड़ियों व अन्य ऐसी वस्तुओं की आकृति को ग्राफ पेपर पर उतार कर आप उनके द्वारा घेरे गये जगह को पता कर सकते है। कोई वस्तु/आकृति समतल पर जितनी जगह घेरती है, वह उसका **क्षेत्रफल** कहलाता है।

ग्राफ पेपर की सहायता से किसी आकृति का क्षेत्रफल नापना -

			y	х		
		у	X	х		
	/ y	Х	Х	У/		
	Х	X	х			
/у	х	X	у/			
/ x	Х	У				
X	z					

चित्र-15.2

ग्राम पेपर पर कोई बंद आकृति बनायें। क्षेत्र की गणना निम्नानुसार करें।

- 1. बंद आकृति के भीतर पूर्ण वर्गाकार भागों को गिनिए।
- 2. बंद आकृति के अंदर आधे से बड़े वर्गाकार भागों को गिनिए।
- बंद आकृति के ठीक आधे वर्ग के भागों को गिनिए।
- 4. बंद आकृति के आधे से छोटे वर्गों को छोड दें।

गणना के लिए वर्गों की संख्या = (पूर्ण वर्गाकार खानों की संख्या + आधे से बड़े वर्गाकार खानों की संख्या + ठीक आधे वर्गाकार खानों की संख्या) / 2

तो आकृति का क्षेत्रफल त्र ऊपर गणना किये गये कुल खानों की संख्या

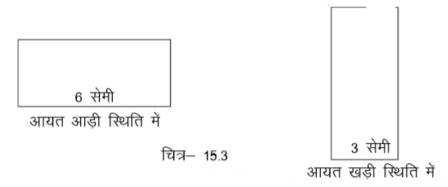
आधे से बड़े वर्ग को भी पूर्ण वर्ग में गिना गया है इसलिए आधे से छोटे आकार के वर्गों को छोड़ दिया गया है तथा ठीक आधे खंड के वर्ग को आधा खंड गिना गया है।

नापने की इकाई 1 सेमी × 1 सेमी का वर्ग है। जिसकी प्रत्येक भुजा 1 सेमी है इसलिए क्षेत्रफल 1 वर्ग सेमी अथवा 1 सेमी2 के रूप में दर्शाया जाता है।

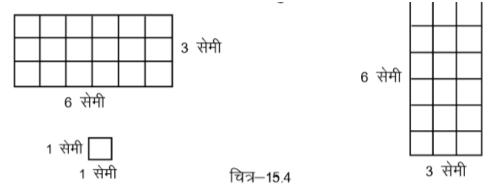
इस विधि से ऊपर दिये गए चित्र का क्षेत्रफल: पूर्ण वर्गाकार खाने (यदि x मानें) = 13 आधे से बड़े वर्गाकार खाने (यदि y मानें) = 7 ठीक आधे वर्गाकार खाने (यदि z मानें) = 1

आकृति का क्षेत्रफल $x+y+\frac{z}{2}=13+7+\frac{1}{2}=20.5$ वर्ग से.मी.

क्रियाकलाप-1


इसी प्रकार अपनी हथेली को ग्र्राफ पेपर पर रख कर पेंसिल की सहायता से हथेली का चित्र बनाइए तथा उसके क्षेत्रफल की गणना कीजिए।

आयत का क्षेत्रफल


कक्षा 5वी में आपने आयत के बारे में पढ़ा होगा। यह एक चतुर्भुज है, जिसके आमने सामने की भुजा बराबर है तथा प्रत्येक कोण समकोण हैं।

क्रियाकलाप-2

1. एक आयत है जिसकी लम्बाई 6 सेमी एवं चौड़ाई 3 सेमी है। प्रत्येक भुजा पर एक-एक सेमी की दूरी पर लम्बाई तथा चौड़ाई की ओर चिह्न लगावें।

2. आयत को 1 सेमी x 1 सेमी के खण्डों में निम्नानुसार बांटें -

दर्शाए गए चित्र में 1 सेमी ग 1 सेमी के बन रहे वर्गों को गिनिए।

वर्गों की संख्या = 18

1 वर्ग का क्षेत्रफल = 1 वर्ग सेमी 18 वर्ग का क्षेत्रफल = 18 वर्ग सेमी

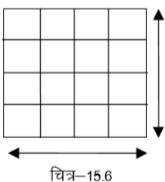
निष्कर्षः जितना बड़ा आयत होगा १ वर्ग सेमी के वर्गों की संख्या उतनी ही अधिक होगी।

क्षेत्रफल = 18 वर्ग सेमी

= 6 सेमी × 3 सेमी या 3 सेमी × 6 सेमी

आयत का क्षेत्रफल = लम्बाई x चौड़ाई

चूंकि गुणा की संक्रिया क्रम विनिमय के नियम का पालन करती है अतः -आयत का क्षेत्रफल = चौड़ाई x लम्बाई, भी लिख सकते हैं।

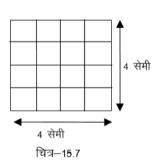

क्रियाकलाप-3

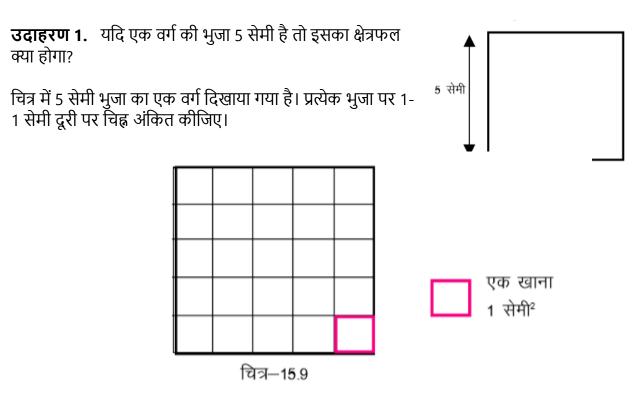
- (1) ग्राफ पेपर पर निम्नलिखित आयतों का निर्माण कर आप उन्हें 1 सेमी x 1सेमी के कितने वर्गाकार खण्डों में बाँट सकते हैं, लिखिए -
 - (i) 7 सेमी लम्बाई और 3 सेमी चौड़ाई
 - (ii) 10 सेमी लम्बाई और 1 सेमी चौड़ाई
 - (iii) 5 सेमी लम्बाई और 5 सेमी चौड़ाई

वर्ग का क्षेत्रफल

वर्ग एक विशेष प्रकार का आयत है। जिसकी भुजाएं समान हैं अर्थात् लम्बाई तथा चौड़ाई बराबर है।


4 सेमी x 4 सेमी भुजा वाले वर्ग को 1 सेमी ग 1 सेमी वाले वर्गों में बाँटने पर -




1 वर्ग सेमी = 1 सेमी × 1 सेमी वर्ग का क्षेत्रफल = वर्ग खण्डों की संख्याएँ

= 16 1 वर्गखण्ड का क्षेत्रफल = 1 वर्ग सेमी 16 वर्गखण्डों का क्षेत्रफल = 16 वर्ग सेमी वर्ग का क्षेत्रफल = 16 वर्ग सेमी वर्ग का क्षेत्रफल = 4 सेमी x 4 सेमी

वर्ग का क्षेत्रफल = भुजा x भुजा = (भुजा) 2

अब आमने-सामने के सभी बिन्दुओं को मिलाकर आड़ी और खड़ी रेखाएँ खींचिए।

इस वर्ग के भीतर 1 सेमी लम्बे व 1 सेमी चौडे खानों को गिनिये।

वर्ग का क्षेत्रफल = वर्ग के भीतर 1 सेमी लम्बे व 1 सेमी चौड़े खानों की संख्या।

= 25 = 25 × 1 खाने का क्षेत्रफल

= 25 × 1 वर्ग सेमी = 25 वर्ग सेमी

अतः वर्ग का क्षेत्रफल = वर्ग की लम्बाई × वर्ग की चौड़ाई

= भुजा का वर्ग

उदाहरण 2. एक आयत की लम्बाई 9 सेमी व चौड़ाई 4 सेमी है, इसका क्षेत्रफल ज्ञात कीजिए।

हल: यहाँ आयत की लम्बाई = 9 सेमी

आयत की चौड़ाई = 4 सेमी

इसलिये आयत का क्षेत्रफल = लम्बाई x चौडाई

= 9 सेमी x 4 सेमी = 36 सेमी 2 या 36 वर्ग सेमी 36 सेमी 2 या 36 वर्ग सेमी

उदाहरण 3. एक वर्ग का क्षेत्रफल ज्ञात कीजिए जिसकी भुजा 6 सेमी लम्बी है।

हल: अतः वर्ग का क्षेत्रफल = भुजा x भुजा

= 6 सेमी x 6 सेमी

= 6 सेमी x 6 सेमी

= 36 सेमी² या 36 वर्ग सेमी

उदाहरण 4. एक कपड़े की लम्बाई 2 मीटर और चौड़ाई 100 सेमी है, उसका क्षेत्रफल ज्ञात कीजिए। हल:

यहाँ आयताकार कपड़े की लम्बाई = 2 मीटर (चूंकि 1 मी. = 100सेमी)

आयताकार कपड़े की चौड़ाई = 100 सेमी

यहाँ लम्बाई व चौड़ाई की इकाई भिन्न-भिन्न है । आयताकार कपडे की लम्बाई = 2 मीटर

> = 2 x 100 सेमी = 200 सेमी

(A) अब आयताकार कपड़े का क्षेत्रफल = लम्बाई x चौड़ाई

= 200 सेमी x 100सेमी

= 20,000 वर्ग सेमी या 20,000 सेमी²

(B) यदि भुजाओं को मीटर में व्यक्त किया जाए तो -

आयताकार कपड़े की लम्बाई = 2 मीटर (चूंकि 100 सेमी = 1 मीटर)

आयताकार कपड़े की चौड़ाई = 100 सेमी = 1 मीटर

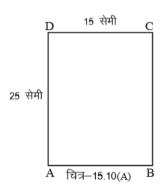
अतः आयताकार कपड़े का क्षेत्रफल = लम्बाई x चौड़ाई

= 2 मीटर x 1 मीटर

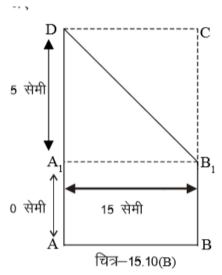
= 2 वर्ग मीटर या 2 मीटर2

यहां A व B की तुलना करने पर

20000 सेमी² = 2 मीटर²


या 10000 सेमी² = 1 मीटर²

अर्थात् 1 मीटर² = 10000 सेमी²


उदाहरण 5. एक आयताकार कागज की लम्बाई 25 सेमी और चौड़ाई 15 सेमी है। उसके कुछ हिस्से को मोड़कर सबसे बड़ी वर्गाकार आकृति प्राप्त की जाती है। प्राप्त वर्ग का क्षेत्रफल ज्ञात कीजिए।

हल:

जैसा कि आपने पूर्व के क्रियाकलाप में देखा था कि आयताकार कागज के कुछ हिस्से को मोड़कर एक वर्गाकार आकृति प्राप्त की जा सकती है।

इसके लिए चित्र में दिखाए अनुसार आयताकार कागज़ की छोटी भुजा पर मोड़ कर बड़ी भुजा पर रिखए। अब कागज़ को CB_1 रेखा के अनुदिश चित्रानुसार मोड़ कर कागज़ को खोलिए और A_1 B_2 C D वर्ग प्राप्त कीजिए -

अब इस बड़े से बड़े वर्गाकार आकृति का क्षेत्रफल

- = भुजा x भुजा
- $= A_1 B_1 \times A_1 D_1$
- = 15 सेमी x 15 सेमी
- = 15 सेमी x 15 सेमी = 225 सेमी²

उदाहरण 6. एक कमरे के आयताकार फर्श की लम्बाई 12 फीट व चौड़ाई 5 फीट है। इस फर्श पर 2 फीट x 1 फीट की फर्शी पत्थर टाइल्स बिछाने का खर्च ज्ञात कीजिए जबकि एक टाइल्स का मूल्य 10 रुपये है।

हल: यहाँ आयताकार फर्श की लम्बाई = 12 फीट

आयताकार फर्श की चौड़ाई = 5 फीट

इस आयतकार कमरे का क्षेत्रफल = लम्बाई x चौड़ाई

= 12 फीट x 5 फीट

= 60 फीट² या 60 वर्ग फीट

चूंकि 1 टाइल्स का क्षेत्रफल = 2 फीट x 1 फीट

= 2 वर्ग फीट

चूंकि 2 वर्ग फीट फर्श में टाइल्स लगती है =

1 वर्ग फीट फर्श में टाइल्स लगेगी = ²

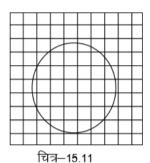
तब 60 वर्ग फीट फर्श में टाइल्स लगेगी = $\frac{1}{2}$ x 60

= 30 टाइल्स

इस प्रकार इस कमरे के आयतकार फर्श में लगने वाले टाइल्स की संख्या त्र 30 अब 1 टाइल्स की कीमत 10 रु. है। 30 टाइल्स की कीमत 10 x 30 रु होगी = 300 रु अतः उस कमरे के आयताकार फर्श में 2 फीट x 1 फीट की टाइल्स बिछाने का खर्चा = 300 रु

प्रश्रावली 15.1

- (1) प्रत्येक आयत का क्षेत्रफल ज्ञात कीजिए, लम्बाई व चौड़ाई निम्नानुसार है -
 - (i) लम्बाई 5 सेमी, चौड़ाई 3 सेमी
 - (ii) लम्बाई 3.5 सेमी. चौडाई 2 सेमी
- (2) निम्नलिखित वर्गों जिनकी भुजा निम्नानुसार है का क्षेत्रफल ज्ञात कीजिए -
 - (i) 5 सेमी
 - (ii) 7 सेमी
- (3) एक वर्ग का क्षेत्रफल 1 वर्गमीटर है, तो इसी वर्ग का क्षेत्रफल वर्ग सेमी में ज्ञात कीजिए।
- (4) एक वर्ग का क्षेत्रफल 10,000 वर्ग सेमी है, तो इसी वर्ग का क्षेत्रफल वर्ग मीटर में ज्ञात कीजिए।
- (5) एक 10 वर्ग सेमी आयताकार कागज की पट्टी से 1 वर्ग सेमी के कितने वर्ग काटे जा सकते है? प्रयोग करके जाँचिए।
- (6) एक 10 सेमी x 2 सेमी आयताकार कागज के टुकड़े से 2 वर्ग सेमी के कितने टुकड़े काटे जा सकते है? प्रयोग करके जाँचिए।
- (7) एक कमरे के आयताकार फर्श की लम्बाई 6 मीटर व चौड़ाई 2 मीटर है। इस फर्श पर 10 सेमी ग 5 सेमी के टाइल्स के बिछाने का खर्च ज्ञात कीजिए जबकि एक टाइल्स की कीमत 5 रु. है।
- (8) एक वर्ग की एक भुजा 10 मीटर है तो इस वर्ग के क्षेत्रफल पर क्या प्रभाव पड़ेगा । यदि
 - (i) उसकी भुजा की लम्बाई दुगुनी कर दी जाए।
 - (ii) उसकी भुजा की लम्बाई तिगुनी कर दी जाये।
- (9) एक टेबल के ऊपरी आयताकार तल की लम्बाई 200 सेमी और चौड़ाई 50 सेमी है। इसे पूरी तरह सनमाइका से ढँकने का खर्च रुपये में ज्ञात कीजिए जबिक सनमाइका की कीमत 25 पैसे प्रति वर्ग सेमी है।


(10) एक कमरे की सभी दीवारें आयताकार हैं। प्रत्येक दीवार की लम्बाई 3 मीटर व चौड़ाई 2 मीटर है। दीवार पर पुताई करवाने का खर्च ज्ञात कीजिए जबकि पुतवाई का खर्च 10 पैसे प्रति वर्ग सेमी है।

वृत्त का क्षेत्रफल

कक्षा 5वीं में आपने वृत्त बनाया होगा।

एक ग्राफ पेपर पर परकार की सहायता से वृत्त बनाइए। वृत्ताकार क्षेत्र में वर्गाकार खंडों की गिनती करें।

जिस प्रकार आपने पत्ती का क्षेत्रफल निकाला था, उसी प्रकार वृत्त का क्षेत्रफल वर्गाकार खानों की गिनती कर निकालें।

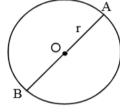
A = वृत्त के अन्दर पूर्ण खानों की संख्या त्र

B = वृत्त के अन्दर आधे से ज्यादा घिरे खानों की संख्या =

C = वृत्त के अन्दर आधे आकार के खानों की संख्या त्र

2

कुल वर्गाकार खानों की संख्या = A + B + C = ----- = -----


एक वर्गाकार खाने का क्षेत्रफल त्र 1 सेमी ग 1 सेमी = 1 वर्ग सेमी अतः वृत्त का क्षेत्रफल = (A + B + C) वर्ग सेमी

वृत्त का क्षेत्रफल सूत्र विधि से ज्ञात करना

चित्र 13 में O वृत्त का केन्द्र है। OA व OB वृत्त की त्रिज्या है। वृत्त की त्रिज्या को r से प्रदर्शित करते हैं।

AB , वृत्त का व्यास कुहलाता है।

व्यास त = 2 x त्रिज्या

चित्र—15.12

$$x = \frac{22}{7}$$
 वृत्त की परिधि एवं व्यास का अनुपात है जिसका मान $\frac{22}{7}$ के लगभग होता है। वृत्त का क्षेत्रफल $\frac{22}{7} \times r^2 = \pi x$ त्रिज्या2

$$A = \pi r^2$$

ग्राफ पेपर पर किसी निश्चित त्रिज्या का वृत्त खींचिए तथा वर्गाकार खानों को गिनकर वृत्त का क्षेत्रफल प्राप्त कीजिए। इसी वृत्त का क्षेत्रफल सूत्र की सहायता से प्राप्त कर दोनों क्षेत्रफलों के बीच तुलना कीजिए।

प्रश्नावली 15.2

- निम्नलिखित त्रिज्या वाले वृत्त का क्षेत्रफल ज्ञात कीजिए। 1.
 - 3 सेमी (i)
 - 7 सेमी (ii)
 - (iii) 14 सेमी
- निम्नलिखित व्यास वाले वृत्त का क्षेत्रफल ज्ञात कीजिए। 2.
 - 8 सेमी (i)
 - 20 सेमी (ii)
 - 14 सेमी (ii)

हमने सीखा

- किसी समतल पर कोई वस्तु जितना स्थान घेरती है वह उसका क्षेत्रफल होता है। आयत का क्षेत्रफल त्र लम्बाई x चौड़ाई 1.
- 2.
- वर्ग का क्षेत्रफल त्र भुजा x भुजा = (भुजा)2 वृत्त का व्यास = 2 x त्रिज्या 3.
- 4.
- वृत्त का क्षेत्रफल = πr^2 जहाँ r वृत्त की त्रिज्या हैं। क्षेत्रफल का मात्रक वर्ग इकाई होता है। 5.
- 6.

अध्याय सोलह

प्रतिशतता (Percentage)

एक शाला के तीन वर्षों का परीक्षाफल निम्नानुसार है-

	सारणी 1				
वर्ष	प्रविष्ट छात्र	उत्तीर्ण छात्र			
2002	200	160			
2003	400	360			
2004	300	282			

बताइए किस वर्ष का परीक्षाफल अच्छा रहा?

उपरोक्त प्रश्न में क्या वर्ष 2003 का परीक्षाफल सबसे अच्छा रहा?

क्या प्रविष्ट छात्रों की संख्या समान नहीं होने पर भी उत्तीर्ण छात्रों की संख्या देखकर यह निष्कर्ष निकाल सकते हैं कि किस वर्ष परीक्षाफल सबसे अच्छा रहा?

दिए गए प्रश्न में यह ज्ञात करने के लिए कि किस वर्ष परीक्षाफल अच्छा रहा हमें प्रविष्ट छात्रों के एक समान आधार पर उत्तीर्ण छात्रों की संख्या ज्ञात करनी होगी। आधार समान करने के लिए हम किसी भी संख्या का आधार के रूप में चयन कर सकते हैं।

मान लिया कि हमें 400 प्रविष्ट छात्रों के आधार पर उत्तीर्ण छात्रों की संख्या ज्ञात करनी है। तब -

वर्ष 2002 में 200 में से उत्तीर्ण छात्र = 160
वर्ष 2002 में 1 में से उत्तीर्ण छात्र =
$$\frac{160}{200}$$
वर्ष 2002 में 400 में से उत्तीर्ण छात्र = $\frac{160}{200} \times 400 = 320$
पुनः वर्ष 2004 में 300 में से उत्तीर्ण छात्र = 282
वर्ष 2004 में 1 में से उत्तीर्ण छात्र = $\frac{282}{300} \times 400 = 376$
वर्ष 2004 में 400 में से उत्तीर्ण छात्र = $\frac{282}{300} \times 400 = 376$

= 376

इस प्रकार वर्ष 2002, 2003 एवं 2004 में समान आधार पर 400 में से उत्तीर्ण छात्रों की संख्या 320, 360 एवं 376 है, अतः वर्ष 2004 का परीक्षाफल सबसे अच्छा रहा।

यहाँ पर हमने तुलना करने के लिए आधार के रुप में 400 का चयन किया। इस प्रकार तुलना करने के लिए आधार के रुप में 100, 1000, 10000 या किसी भी अन्य सुविधाजनक संख्या का प्रयोग कर सकते हैं।

इसी प्रश्न पर पुनः विचार करें-

वर्ष 2002 में 100 में से उत्तीर्ण छात्रों की संख्या =
$$\frac{160}{200} \times 100$$
 = 80 वर्ष 2003 में 100 में से उत्तीर्ण छात्रों की संख्या = $\frac{360}{400} \times 100$ = 90 एवं वर्ष 2004 में 100 में से उत्तीर्ण छात्रों की संख्या = $\frac{282}{300} \times 100$ = 94 इस प्रकार वर्ष 2002, 2003 एवं 2004 में समान आधार 100 में से उत्तीर्ण छात्रों की र

इस प्रकार वर्ष 2002, 2003 एवं 2004 में समान आधार 100 में से उत्तीर्ण छात्रों की संख्या क्रमशः 80, 90 एवं 94 है।

इस प्रकार तुलना करने के लिए यदि समान आधार 100 लेते है तब इसे प्रतिशत अर्थात् प्रत्येक सौ पर कहेगें। किन्तु यदि तुलना की जाने वाली राशियाँ बहुत बड़ी हो तब समान आधार एक हजार, दस हजार या 1 लाख के रुप में लेते है एवं इसे प्रति हजार, प्रति दस हजार या प्रति लाख कहेंगे।

प्रतिशत का विभिन्न रूपों में निरूपण

आपने अब तक देखा कि 25% का अर्थ 100 में से 25 है। इसी प्रकार 50% का अर्थ 100 में से 50 है। अब क्या हम 100 में से 25 या 50 को अन्य रूपों में लिख सकते हैं? एक तरीका लिखने का आप सीख चुके हैं। चूंकि प्रतिशत एक अनुपात है और भिन्न को दशमलव रूप में भी लिखा जा सकता है, अतः प्रतिशत को भी अनुपात एवं दशमलव के रूप में लिखा जा सकता है।

आइए. अब प्रतिशत को विभिन्न रूपों में व्यक्त करने की प्रक्रिया को एक-एक करके सीखें।

प्रतिशत को भिन्न में बदलना

आप जानते हैं कि 50% का अर्थ 100 में से 50 से है । इसे हम 100 भी लिख सकते हैं। अतः

50% का भिन्नात्मक रूप एक की तुलना में $\frac{1}{2}$ है। क्रियाकलाप -1

- 1. 25% को भिन्न रूप में बदलिए।
- 2. 75% को भिन्न रूप में बदलिए।

ऐसे और भी स्वाल सोचिए व साथियों को हल करने दीजिए।

प्रतिशत को अनुपात में बदलना

है।

पूर्व में आपने प्रतिशत को भिन्न के रूप में बदला है। अब प्रतिशत को अनुपात में बदलकर देखते हैं।

50% का भिन्न रूप है, इस भिन्न रूप को 50: 100 अथवा 1: 2 के रूप में भी लिखा जा सकता

क्रियाकलाप -2

- 1. 25% को अनुपात रूप में बदलिए।
- 2. 75% को अनुपात रूप में बदलिए। ऐसे और भी सवाल सोचिए व साथियों को हल करने दीजिए।

प्रतिशत को दशमलव में बदलना

50

इसके पूर्व आपने प्रतिशत को भिन्न और अनुपात में बदला है। आइए, अब प्रतिशत को दशमलव रूप में बदल कर देखें -

50% का भिन्न रूप $\overline{100}$ है। इसका अनुपात रूप 50:100 है। अब $\overline{100}$ अर्थात् 50 में 100 का भाग देने पर भागफल 0.50 होगा। अतः 50% का दशमलव रूप 0.50 है।

क्रियाकलाप -3

अब निम्नलिखित को हल करके देखें -

- 25% को दशमलव रूप में बदलिए।
- 2. 75% को दशमलव रूप में बदलिए। ऐसे और भी सवाल सोचिए व साथियों को हल करने दीजिए।

भिन्न, अनुपात एवं दशमलव का प्रतिशत रूप में निरूपण

आप प्रतिशत को भिन्न, अनुपात एवं दशमलव में बदलना सीख चुके हैं। आपने यह भी देखा कि उनका मान एक समान है केवल उनके रूप अलग-अलग हैं। अब इसके विपरीत भिन्न, अनुपात एवं दशमलव को एक-एक करके प्रतिशत में बदलकर देखें। अनुपात को प्रतिशत रूप में बदलना

यदि दिया गया अनुपात 1: 2 है जिसका अर्थ है,

अतः
$$\frac{1}{2} \times \frac{100}{100} = \frac{100}{2} \times \frac{1}{100} = 50 \times \frac{1}{100} = 50\%$$

क्रियाकलाप -4

अब निम्नलिखित अनुपातों को प्रतिशत रूप में बदलकर देखें।

- (i) 1: 5 को प्रतिशत में बदलिए।
- (ii) 3: 4 को प्रतिशत में बदलिए।

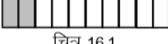
ऐसे और भी सवाल सोचिए व साथियों को हल करने को दीजिए।

दशमलव को प्रतिशत में बदलना

उदाहरण 1. 0.75 को प्रतिशत में व्यक्त करना

$$0.75 = \frac{0.75 \times 100}{100} = \frac{75}{100} = 75\%$$

प्रतिशत और दशमलव की तुलना


प्रदर्शित चित्र द्वारा विभिन्न मात्राओं को प्रतिशत एवं दशमलव में दर्शाया गया है।

उदाहरण 2. 0-2 = 20%

$$0-2 = 20\%$$

$$0.3 = 30\%$$

$$0.4 = 40\%$$

चित्र 16.1

$$0.2 \times \frac{100}{100} = 20 \%$$

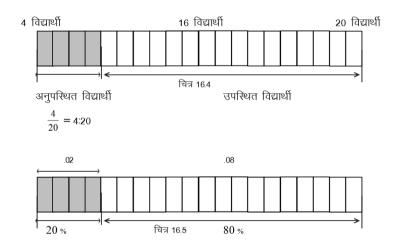
$$0.3 \times \frac{100}{100} = 30 \%$$

$$0.4 \times \frac{100}{100} = 40 \%$$

क्रियाकलाप -5

अर्थात् दशमलव को प्रतिशत में बदलने के लिए दिए गए दशमलव अंक में 100 का गुणा करके प्रतिशत का चिह्न लगाते हैं।

निम्नलिखित दशमलव को एक की तुलना में प्रतिशत में बदलिए।


- 2.25 को प्रतिशत में बदलिए।
- 0.60 को प्रतिशत में बदलिए।

ऐसे और भी सवाल बनाइए और साथियों को हल करने को दीजिए। उनके साथ अपने हल मिलाइए।

भिन्न, दशमलव, अनुपात और प्रतिशत का पारस्परिक संबंध

यदि किसी कक्षा में विद्यार्थियों की दर्ज संख्या 20 है, जिनमें से 4 विद्यार्थी अनुपस्थित हैं, तो इसका

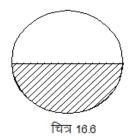
भिन्न रूप $\overline{20}$ होगा। एक की तुलना में $\overline{20}$ का दशमलव रूप 0.2 है। इसे प्रतिशत में बदलने पर 20% विद्यार्थी अनुपस्थित हैं। इसे निम्नलिखित चित्रों में प्रदर्शित किया गया है।

4

निष्कर्षः $\overline{20}$ 0.2 और 20% समतुल्य राशियाँ हैं। स्पश्ट है कि भिन्न को दशमलव में और दशमलव को भिन्न में, दशमलव को प्रतिशत में और प्रतिशत को दशमलव में या भिन्न में बदला जा सकता है।

क्रियाकलाप -6

रिक्त स्थानों की पूर्ति कीजिए-

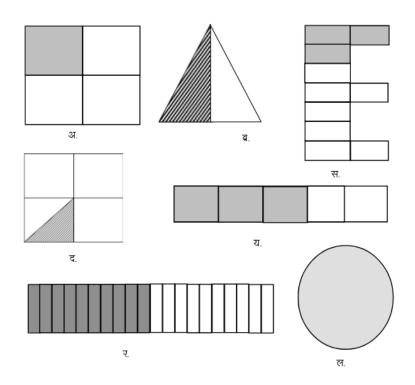

1. $\frac{7}{2}$ =(दशमलव रूप)


2. 0.45 = (भिन्न रूप) = (अनुपात रूप)

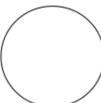
ऐसे और भी संवाल बनाइए, खुद करिए और साथियों को करने के लिए दीजिए।

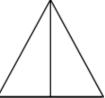
प्रतिशत का चित्रांकन

निम्नलिखित चित्रों 16.6 एवं 16.7 के छायांकित एवं अछायांकित भाग का प्रतिशत ज्ञात करें।



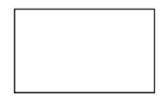
छायांकित भाग
$$=$$
 $\frac{1}{2}$ छायांकित भाग $=$ $\frac{1}{4}$ छायांकित भाग $=$ $\frac{50}{100}$ $=$ $\frac{50}{100}$ $=$ $\frac{1}{2}$ अछायांकित भाग $=$ $\frac{3}{4}$ अछायांकित भाग $=$ $\frac{50}{100}$ $=$ $\frac{50}{100}$ $=$ $\frac{75}{100}$ $=$ $\frac{75}{100}$ $=$ $\frac{75}{100}$


प्रश्नावली 16.1

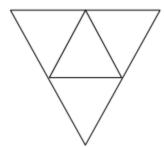

प्रश्न 1. निम्नलिखित आकृतियों के छायांकित भाग को भिन्न, दशमलव एवं प्रतिशत में बदलिए।

₹.	1% =	 है।

प्रश्न 3. निम्नलिखित चित्रों के 100% भाग को छायांकित कीजिए और भिन्न रूप में व्यक्त कीजिए।



प्रश्न 4. निम्नलिखित चित्रों के 50% भाग को छायांकित कीजिए और उसे भिन्न रूप में व्यक्त कीजिए।



प्रश्न 5. निम्नलिखित चित्र के 75% भाग को छायांकित कीजिए और उसे भिन्न रूप में लिखिए।

प्रश्न 6. निम्नलिखित चित्र के 25% भाग को छायांकित कीजिए और उसे भिन्न रूप व दशमलव रूप में लिखिए।

लाभ (Profit)

आइये प्रतिशतता के एक उपयोग पर विचार करें।

उदाहरण 3. एक दुकानदार ने 300 रुपये में एक रेडियो खरीदकर 360 रुपये में बेच दिया एवं एक दूसरे दुकानदार ने 200 रुपये में एक रेडियो खरीद कर 260 रुपये में बेच दिया, अब बताइये कौनसा दुकानदार अधिक फायदे में रहा?

हल यहाँ दोनों दुकानदारों को ही 60 रुपये लाभ होता है, किन्तु दोनों के लागत मूल्य भिन्न-भिन्न है। अब हम समान दर 100 पर अर्थात् प्रतिशत में लाभ की गणना करेगें।

चूंकि प्रथम दुकानदार को 300 रुपये पर प्राप्त लाभ = 60 रु.

इसलिए प्रथम दुकानदार को 1 रु पर प्राप्त लाभ $= \frac{300}{300}$ रु.

अतः प्रथम दुकानदार को 100 रु. पर प्राप्त लाभ = $\frac{60}{300} \times 100$ = 20 रु

चूंकि दूसरे दुकानदार को 200 रु. पर प्राप्त लाभ = 60 रु.

इसलिए दूसरे दुकानदार को 1 रु. पर प्राप्त लाभ $= \frac{00}{200}$ रु.

अतः दूसरे दुकानदार को 100 रु. में प्राप्त लाभ $=\frac{60}{200} \times 100 = 30$ रु.

इस प्रकार प्रथम दुकानदार को 100 रु. पर 20 रु. अर्थात् 20% एवं दूसरे दुकानदार को 100 रु. पर 30 रु. अर्थात् 30% लाभ प्राप्त हुआ। अतः दूसरा दुकानदार अधिक फायदे में रहा।

टीप: लाभ प्रतिशत अथवा हानि प्रतिशत की गणना क्रय मूल्य पर की जाती हैं।

इन उदाहरणों से स्पष्ट है कि प्रतिशत का प्रयोग ऐसे मानों की तुलना करने में कर सकते हैं जिनके आधार समान न हों। अपने दैनिक जीवन में हम प्रतिशत का प्रयोग अनेक स्थानों पर करते है, क्या आप बता सकते हैं कि इसका प्रयोग किन-किन स्थानों पर करते हैं?

आइए, दैनिक जीवन से सम्बन्धित एक और उदाहरण देखें। एक सब्जी बेचने वाली टमाटर 10 रु. प्रति किलो की दर से खरीदकर 12 रु. प्रतिकिलो की दर से बेचती है।

यहाँ 10 रु. उसका क्रय मूल्य है और 12 रु. उसका विक्रय मूल्य। चूंकि विक्रय मूल्य, क्रय मूल्य से अधिक है, अतः उसको लाभ हो रहा है।

लाभ = विक्रय मूल्य - क्रय मूल्य = 12 रु. - 10 रु. = 2 रु.

अतः लाभ होगा जब हम कम मूल्य में खरीदकर अधिक मूल्य में बेचेंगे, अर्थात् जब विक्रय मूल्य > क्रय मूल्य

त्रझ चूंकि लाभ = **विक्रय मूल्य - क्रय मूल्य**(i) इसे इस प्रकार भी लिख सकते हैं-

विक्रय मूल्य - क्रय मूल्य = लाभ विक्रय मूल्य त्र क्रय मूल्य + लाभ (पक्षांतर करने पर)......(ii)

तथा क्रय मृत्य त्र क्रिय मृत्य - लाभ (पद्मातर करन पर)......(iii)

अतः हम (i), (ii) एवं (iii) की सहायता से क्रमशः लाभ, विक्रय मूल्य एवं क्रय मूल्य की गणना कर सकते है।

हानि (Loss)

एक दुकानदार ने 120 रु. के टमाटर खरीदे जिनमें से कुछ टमाटर खराब निकले, बचे टमाटरों को वह कुल 100 रु. में बेच पाया तो उसे लाभ हुआ या हानि?

दुकानदार को 20 रु. की हानि हुई। जब क्रय मूल्य, विक्रय मूल्य से अधिक होता है तो हानि होती है अथवा हानि होगी जब क्रय मूल्य > विक्रय मूल्य

अतः हानि = क्रय मूल्य - विक्रय मूल्य(iv)

या विक्रय मूल्य = क्रय मूल्य - हानि(v)

या क्रय मूल्य = विक्रय मूल्य + हानि(v)

आइए, एक उदाहरण लेते हैं। एक दुकानदार ने 20 किलो आलू 5 रुपये प्रति किलो की दर से खरीदे। सुबह दुकान खोलने पर वह देखता है कि 3 किलो आलू खराब हो गए हैं तथा आलू केवल 17 किलो शेष है। एक किलो आलू चूहे खा गए। अब यदि 16 किलो आलू को 6 रुपये प्रति किलो की दर से बेचा जाता है तो उसका विक्रय मूल्य 16 × 6 = 96 रु. होगा जबकि उसने 20 किलो 100 रु. में खरीदे थे। यहाँ विक्रय मूल्य क्रय मूल्य से कम है तो हानि होगी।

हानि = क्रयं मूल्य - विक्रयं मूल्य

= 100 - 96

= 4

हम (iv), (v) एवं (vi) से हानि, क्रय मूल्य एवं विक्रय मूल्य की गणना कर सकते है।

सारणी 2 में रिक्त स्थानों की पूर्ति कीजिये –

सारणी 2

क्र.सं.	विक्रय मूल्य	क्रय मूल्य	लाभ	क्र.सं.	विक्रय मूल्य	क्रय मूल्य	हानि
1.	340	315	25	6.		395	25
2.	280	215		7.	490	490	
3.	460		80	8.	1080		108
4.		530	40	9.	2225	1950	
5.	177		34	10.	6750		730

उदाहरण 4. सुनीता एक केलकूलेटर 350 रुपये में खरीद कर 420 रुपये में साधना को बेच देती है तो उसे कितना प्रतिशत लाभ हुआ?

हल प्रथम तरीका-

यहाँ विक्रय मूल्य, क्रय मूल्य से अधिक है, अतः सुनीता को लाभ होगा।

लाभ = विक्रय मूल्य - क्रय मूल्य

= 420 - 350 =70 ₹.

यह लाभ क्रय मूल्य 350 रु. पर है। 350 रु. पर लाभ होता है = 70 रु.
$$\frac{70}{350}$$
 तो 1 रु. पर लाभ = $\frac{70}{350} \times 100 = 20$ अतः 100 रु. पर लाभ = $\frac{70}{350} \times 100 = 20$ रु. अतः लाभ 20% होगा। **द्वितीय तरीका-** इसे निम्नानुसार भी हल कर सकते है - लाभ = $\frac{1}{100} \times 100$ लाभ = $\frac{1}{100} \times 100$ लाभ = $\frac{1}{100} \times 100$ = $\frac{1}{100} \times 100$

इस प्रकार सूत्र से लाभ की गणना प्रतिशत में कर सकते हैं।

उदाहरण 5. एक व्यापारी ने एक किण्टल गेहूँ 700 रु. में खरीदा। पानी में भीग जाने के कारण उसे 6 रुपये प्रति किलोग्राम के भाव से गेहूँ बेचना पड़ा, ज्ञात कीजिए उसे कितने प्रतिशत लाभ या हानि हुई?

हल यहाँ १ क्रिटल (१०० कि.ग्रा.) गेहूँ का क्रय मूल्य = ७०० रु.

तथा 100 किलोग्राम गेहूँ का विक्रय मूल्य = 100 × 6 = 600 रु. यहाँ विक्रय मूल्य, क्रय मूल्य से कम है, अतः उसे हानि होगी।

हानि = क्रय मूल्य - विक्रय मूल्य =
$$700 - 600 = 100$$
 रु. $\frac{500}{500} = \frac{100}{500}$ हानि % = $\frac{100 \times 100}{700} = \frac{100}{7}$ हानि = $\frac{14\frac{2}{7}}{7}$ %

उदाहरण 6. एक मैकेनिक ने एक मोटर साईकिल 5000 रु. में खरीदी। मोटर साइकिल को सुधारने एवं रंगाई आदि में 1000 रु. खर्च हो गए, यदि अब वह उसे 7000 रु. में बेच दे, तो उसे कितने प्रतिशत लाभ या हानि होगी?

हल मैकेनिक द्वारा किया गया खर्च भी क्रय मूल्य में जुड़ जायेगा, इस मूल्य को लागत मूल्य कहते है तथा लाभ हानि की गणना लागत मूल्य पर की जाती है।

यहाँ विक्रय मूल्य, लागत मूल्य से अधिक है, इसलिए उसे लाभ होगा।

ਗਾਮ: =
$$\frac{\frac{e}{e} + \times 100}{\frac{e}{e} + \frac{100}{e}}$$
 = $\frac{1000 \times 100}{6000} = \frac{100}{6} = \frac{50}{3}$ ਗਾਮ = $\frac{16\frac{2}{3}}{3}$

टीपः वास्तविक लाभ या हानि ज्ञात करने के लिए हम व्यक्ति द्वारा किए गए खर्च को क्रय मूल्य में जोड़ देते है। इसे लागत मूल्य कहते हैं। इस स्थिति में लाभ या हानि की गणना लागत मूल्य के आधार पर करते हैं।

उदाहरण 7. एक किसान 15 क्विटल धान 560 रु. प्रति क्विण्टल के भाव से बेचता है उसे बीज, पानी, बिजली, खाद, मजदूरी आदि में कुल 490 रु. प्रति क्विटल खर्च आता है तो लाभ प्रतिशत की गणना कीजिए।

हल किसान के लिए कुल लागत मूल्य =
$$490 \times 15 = 7350$$
 रु. किसान के लिए विक्रय मूल्य = $560 \times 15 = 8400$ रु. अतः लाभ त्र विक्रय मूल्य - लागत मूल्य = $8400 - 7350 = 1050$ रु.
$$\frac{1050 \times 100}{1000} = \frac{100}{7} = 14\frac{2}{7}$$

उदाहरण 8. मोहन द्वारा एक साईकिल 1536 रु. में सुधीर को बेचने पर 20% की हानि होती है। साईकिल का क्रय मूल्य ज्ञात कीजिए?

हल पहली विधि-

माना क्रय मूल्य 100 रु. है।
तो विक्रय मूल्य = क्रय मूल्य - हानि
= (100 - 20) (हानि 20% या 100 पर 20 है)
= 80 रु.
यदि विक्रय मूल्य 80 रु. है तो क्रय मूल्य = 100 रु. है।

$$\frac{100}{80}$$
विक्रय मूल्य 1 रु. है तो क्रय मूल्य = $\frac{100}{80} \times 1536$
विक्रय मूल्य 1536 रु. है तो क्रय मूल्य = $\frac{100}{80} \times 1536$
त्र 1920
अतः साईकिल का क्रय मूल्य 1920 रु. होगा।

दूसरी विधि-

$$= x \times \frac{20}{100}$$
$$= \frac{x}{5}$$

विक्रय मूल्य त्र क्रय मूल्य - हानि

1536 =
$$\frac{x - \frac{x}{5}}{5}$$
 (विक्रय मूल्य दिया गया है)
1536 = $\frac{\frac{x}{1} - \frac{x}{5}}{5}$
1536 = $\frac{\frac{4x}{5}}{5}$
1536 × 5 = 4x
= $\frac{1536 \times 5}{4} = 1920$ (तिर्यक गुणा)

अतः क्रय मूल्य 1920 रु. होगा।

उदाहरण 9ण् एक व्यापारी 1 टिन तेल 780 रुपये में खरीदता है। वह उसे प्रति लीटर किस भाव से बेचे कि उसे पूरे में 20% का लाभ हो यदि 1 टिन में 15 लीटर तेल आता है।

हलः यहाँ क्रय मूल्य त्र 780 रु.

लाभ = 20%
अतः 780 रु. का 20% =
$$\frac{780 \times 20}{100}$$
 = 156
विक्रय मूल्य = क्रय मूल्य \$ लाभ
= 780 \$ 156
= 936 रु.

विक्रय मूल्य प्रति लिटर = 936 » 15 = 62.40 रु. प्रति लीटर

उदाहरण 10. एक टेलीविज़न 9000 रुपये में बेचने से दुकानदार को 10% की हानि होती है। वह टेलीविजन कितने में बेचे कि उसे 15% का लाभ हो?

हलः टेलीविज़न का विक्रय मूल्य = 9000 रु.

मानाकि टेलीविज़न का क्रय मूल्य त्र 100 रु. हो,

(10% हानि पर बेचने पर) प्रथम विक्रय मूल्य = 100 - 10 = 90 रु.

जब विक्रय मूल्य 90 रु. हो तो क्रय मूल्य = 100 रु.

जब विक्रय मूल्य 1 रु. हो तो क्रय मूल्य

जब विक्रय मूल्य 9000 रु. हो तो क्रय मूल्य

अतः टेलीविज़न का क्रय मूल्य = 10,000 रु.

लाभ: = 15%

लाभ = 10,000 का 15% = $\frac{10000 \times \frac{15}{100}}{100} = 1500$ रु.

द्वितीय विक्रय मूल्य = 10.000 + 1500 = 11,500 रु. अतः 15% लाभ कमाने के लिए दुकानदार को टेलीविज़न 11,500 रु. में बेचनी चाहिए।

प्रश्नावली 16.2

प्र.1 निर्देशानुसार रिक्त स्थान की पूर्ति कीजिए -

_				
क्र.	क्रय मूल्य	विक्रय मूल्य	लाभ या हानि	लाभ या हानि
सं.			रु. में	प्रतिशत में
(i)	250 रु.	300 रु.	लाभ = 50 रु.	लाभ% = 20%
(ii)	300 रु.	280 रु.	हानि = 20 रु.	हानि% = $6\frac{2}{3}$ %
(iii)	700 रु.	679 रु.		
(iv)	300 रु.	324 ক.		
(v)	110 रु.	88 रु.		

प्र.2 रिक्त स्थान की पूर्ति कीजिए:-

क्र.	क्रय मूल्य	लाभ / हानि	विक्रय मूल्य	लाभ या हानि प्रतिशत में
(i)	1200 रु.	90 रु. लाभ	1290	लाभ% = $7\frac{1}{2}$ %
(ii)	300 रु.	40 रु. लाभ		
(iii)	500 रु.	25 रु. लाभ		
(iv)	1200 रु.	80 रु. हानि		
(v)	400 रु.	40 रु. हानि		

प्र.3 रिक्त स्थानों की पूर्ति कीजिए:-

क्र.	विक्रय मूल्य	लाभ / हानि	क्रय मूल्य	लाभ या हानि
	रु. में	रु. में	रु. में	प्रतिशत में
(i)	1800	हानि 350	1800+350 = 2150	$16\frac{12}{43}$ % हानि
(ii)	150	हानि 30		
(iii)	1400	लाभ 280		
(iv)	950	हानि 50		
(v)	375	लाभ 25		

- प्र.4 किसी वस्तु का क्रय मूल्य 120 रु. है तथा विक्रय मूल्य 150 रु. है तो उसे कितने प्रतिशत लाभ हुआ?
- प्र.5 ज्योत्सना ने एक घड़ी 380 रु. में खरीदी और उसे 342 रु. में बेच दी तो उसे कितने प्रतिशत हानि हुई?
- प्र.6 एक दुकानदार ने 15 रेडियो 270 रु. प्रति रेडियो की दर से खरीदे एवं सभी रेडियो 4200 रु. में बेच दिए तो उसका लाभ या हानि प्रतिशत ज्ञात कीजिए।
- प्र.7 एक घड़ी को 450 रु. में बेचने पर 50 रु. की हानि होती है। 20% लाभ पाने के लिए घड़ी को कितने में बेचनी चाहिए?
- प्र.8 विजय ने 1200 केले 16 रु. प्रति दर्जन की दर से खरीदे। वह उन्हें प्रति दर्जन किस भाव से बेचे कि उसे कुल पर 2% का लाभ हो?
- प्र.9 एक कुर्सी 144 रु. में बेचने पर एक व्यक्ति को 4% की हानि होती है। 10% लाभ प्राप्त करने के लिए उसे कुर्सी को कितने रुपये में बेचना चाहिए?
- प्र.10 एक दुकानदार एक टीवी सेट 5000 रु. में खरीदता है। वह उसके मरम्मत पर 500 रु. खर्च करता है। अब यदि वह 5% लाभ लेकर उसे बेचना चाहता है तो विक्रय मूल्य ज्ञात कीजिए।
- प्र.11 कोई वस्तु 7% की हानि पर 837 रु. में बेची गई तो उस वस्तु का क्रय मूल्य ज्ञात कीजिए।
- प्र.12 श्याम ने एक साइकिल 1800 रु. में खरीदी। उसने वह 10% लाभ पर मोहन को बेच दी। मोहन उस साइकिल को 5% लाभ लेकर अनवर को बेच दिया तो बताइए अनवर ने उस साइकिल को कितने में खरीदा?
- प्र.13 एक व्यापारी ने 1 रु. में 5 की दर से 1000 आम खरीदकर एक रुपये के 4 की दर से बेच दिए तो उसका लाभ प्रतिशत ज्ञात कीजिए।
- प्र.14 एक दुकानदार दो साइकिलें 1100 रु. प्रति साइकिल के हिसाब से बेची एक पर उसे 10ः का लाभ एवं दूसरे पर उसे 20% की हानि हुई। बताइए उसे लाभ हुआ कि नहीं। लाभ या हानि प्रतिशत में ज्ञात कीजिए।
- प्र.15 किसी वस्तु को 900 रु. में खरीदा गया वस्तु को कितने में बेचा जाये कि 15% का लाभ हो।

साधारण ब्याज(Simple Interest)

शाला में वार्षिक उत्सव का आयोजन हुआ। छात्र-छात्राएं अपने अभिभावक के साथ उपस्थित थे। विभिन्न प्रतियोगिताओं में विजयी छात्र-छात्राओं को पुरस्कार प्रदान किया गया। अंत में शाला में बोर्ड परीक्षा में सबसे अधिक अंक पाने वाले छात्र को शाला की ओर से संस्थापक के नाम का स्वर्ण पदक प्रदान किया गया। समारोह से लौटते समय शीला ने अपने पिताजी से पूछा कि संस्थापक आज नहीं है फिर भी उनके नाम का स्वर्ण पदक कौन खरीद कर देता हैं पिताजी ने बताया कि संस्थापक महोदय जब जीवित थे उसी समय उन्होंने शाला के नाम पर बैंक में एक बड़ी राशि जमा करा दी थी। उसी से यह स्वर्ण पदक दिया जाता है। शीला पुनः पिताजी से पूछती है कि प्रति वर्ष स्वर्ण पदक देने में एक न एक दिन पूरा धन खत्म हो जावेगा। उसके बाद स्वर्ण पदक कौन देगा? पिताजी बोले- संस्थापक द्वारा जमा किया गया धन (मूलधन) आज भी बैंक में पूरा जमा है। केवल उस धन पर बैंक द्वारा प्रतिवर्ष दिए गए ब्याज से ही हर साल स्वर्ण पदक दिया

ज|ता है। शीला यह तो समझ गई कि स्वर्ण पदक की व्यवस्था हर साल कैसे होती है परन्तु वह ब्याज के बारे में कुछ भी नहीं जानती थी। वह बार-बार यही सोच रही थी कि आखिर बैंक में पैसा जमा करने पर बैंक ब्याज क्यों देती है?

आइए, शीला के सवालों का जवाब ढूंढें:-

कई बार हमें घरेलू खर्च के लिए, व्यवसाय को बढ़ाने के लिए या अन्य कई कार्यों के लिए कुछ अतिरिक्त धन की आवश्यकता होती है। इसके लिए हमें बैंक, वित्तीय संस्थाओं या अन्य व्यक्तियांे से धन उधार लेना पड़ता है। यह संस्थाएँ उनके द्वारा दिए गए रुपये के उपयोग के बदले कुछ अतिरिक्त धन लेती है। यह अतिरिक्त धन ब्याज कहलाता है तथा जो धन उधार लिया या दिया जाता है वही मूलधन है। ली गई अथवा दी गई राशि पुनः लौटाते समय मूलधन व ब्याज दोनों चुकाने पड़ते हैं, इसे मिश्रधन कहते हैं। आइए, एक उदाहरण से और अधिक स्पष्ट करने का प्रयास करें।

रामू खेती कार्य हेतु बैंक से 5500 रु. का धन उधार लेता है तथा 2 वर्ष बाद वह बैंक को 6050 रु. लौटाता है।

रामू का मूलध्न कितना है ?

2 वर्ष बाद रामू ने बैंक को कुल कितने रुपये लौटाए ?

6050 रु. कौनसा धन कहलाएगा ?

बताइये राम् द्वारा कितनी राशि अतिरिक्त लौटाई गई ?

6050 - 5500 = 550 ₹.

यह अतिरिक्त धन ही ब्याज या साधारण ब्याज कहलाता है।

सामान्यतः ब्याज की गणना वार्षिक की जाती है।

अतः साधारण ब्याज के प्रश्नों को हल करते समय हमें मूलधन, मिश्रधन एवं ब्याज में से कोई दो मान मालूम हो तो तीसरा मान निकाल सकते हैं।

अतः मिश्रधन = मूलधन + ब्याज

ब्याज = मिश्रधन - मूलधन मूलधन = मिश्रधन - ब्याज

उपरोक्त उदाहरण में रामू द्वारा उधार लिया गया धन 5500 रु. जो कि मूलधन हैं, पर 2 वर्ष में लिया जाने वाला ब्याज 550 रु. है।

मूलधन 5500 रु. पर 1 वर्ष में लिया जाने वाला ब्याज रु.

1 रु. पर 1 वर्ष में लिया जाने वाला ब्याज =
$$=\frac{550}{2} = 275$$
 रु

275

100 रु. पर 1 वर्ष में लिया जाने वाला ब्याज = $\overline{5500}$ रु.

100 रु. पर 1 वर्ष के लिए ब्याज की गणना करना ब्याज दर कहलाता है। ब्याज दर को अधिकतर प्रति सैंकड़ा या प्रतिशत में बताया जाता हे। रामू द्वारा लिए गए उधारी पर ब्याज दर 5% या पाँच प्रतिशत है।

उदाहरण 11. एक व्यक्ति ने 12% प्रतिवर्ष की दर से 200 रु. 2 वर्ष के लिए उधार लिए। ब्याज ज्ञात कीजिए।

हलः 12% प्रतिवर्ष से तात्पर्य यह है कि 100 रु. पर 1 वर्ष में ब्याज 12 रु. देने हैं।

200 रु. पर 2 वर्ष के लिए ब्याज = $\frac{200 \times 12 \times 2}{100}$ = 48 रु. हुआ।

उदाहरण 12. 300 रु. का 12% की दर से 3 वर्ष के लिए ब्याज ज्ञात कीजिए।

हलः दर 12% या 12 प्रतिशत वार्षिक

अर्थात् 100 रु. पर 1 वर्ष के लिए ब्याज = 12 रु.

1 रु. पर 1 वर्ष के लिए ब्याज = $\frac{12}{100}$ रु.

300 रु. पर 1 वर्ष के लिए ब्याज = $\frac{300 \times 12}{100}$ रु.

300 रु. पर 2 वर्ष के लिए ब्याज= $\frac{300 \times 12 \times 2}{100}$ रु.

300 रु. पर 3 वर्ष के लिए ब्याज= $\frac{300 \times 12 \times 3}{100}$ रु = 108 रु.

P रु. का R% की दर से T वर्ष का ब्याज की गणना

100 रु. पर 1 वर्ष के लिए ब्याज= R रु.

1 रु. पर 1 वर्ष के लिए ब्याज = $\frac{R}{100}$ रु.

P \star R P \star D. Ut 1 and ab first equation = $\frac{P \times R}{100}$

जहां

P = Principal (मूलधन)

R = Rate (दर)

T = Time (समय)

P रु. पर ज् वर्ष के लिए ब्याज =
$$\frac{P \times R \times T}{100}$$
 रु.

या P रु. पर R% की दर से T वर्ष का ब्याज =
$$\frac{P \times R \times T}{100}$$
 रु. जहां P = मूलघन, R = दर, T = समय

उदाहरण 13. 2000 रु. का 24% की दर से 2 वर्ष का ब्याज ज्ञात कीजिए। हलः

प्रथम विधि

100 रु. पर 1 वर्ष का ब्याज = 24 रु.
$$\frac{24}{100}$$
 रु. पर 1 वर्ष का ब्याज = $\frac{100}{100}$ रु.

2000 रु. पर 1 वर्ष का ब्याज =
$$\frac{2000 \times 24}{100}$$
 रु.

2000 रु. पर 2 वर्ष का ब्याज =
$$\frac{2000 \times 24 \times 2}{100}$$
 = 960 रु.

द्वितीय विधि

P = 2000 रु.
R = 24%
T = 2 वर्ष

$$\frac{P \times R \times T}{100} = \frac{2000 \times 24 \times 2}{100} = 20 \times 24 \times 2$$

= 960 रु.

उदाहरण 14. 1650 रु. का 3 वर्ष का की दर से साधारण ब्याज एवं मिश्रधन ज्ञात कीजिए। हलः यहाँ मूलधन त्र 1650 रु.

समय त्र 3 वर्ष
$$\frac{6^{\frac{2}{5}}\% = \frac{32}{5}}{47}$$
साधारण ब्याज =
$$\frac{\frac{P \times R \times T}{100}}{100}$$
=
$$\frac{1650 \times 3 \times \frac{32}{5}}{100}$$
=
$$\frac{3168}{10}$$

उदाहरण 15. किसी वित्तीय कम्पनी के सेविंग बैंक खाते में साधारण ब्याज की दर 4% प्रतिवर्ष है। सीमा ने खाते में 5000 रु. जमा कराए। उसे 2) वर्ष बाद कितना ब्याज एवं मिश्रधन मिलेगा?

हलः यहाँ मूलधन त्र 5000 रु.

दर = 4
$$समय = 2\frac{1}{2} = \frac{5}{2} \text{ वर्ष}$$

$$\frac{P \times R \times T}{100}$$

$$\frac{5000\times4\times\frac{5}{2}}{100}$$

अतः उसे 500 रु. ब्याज एवं 5500 रु. मिश्रधन प्राप्त होगा।

प्रश्नावली 16.3

प्र.1 निम्नांकित सारणी में दिए गए रिक्त स्थानों की पूर्ति कीजिए:-

क्र.सं.	मूलधन	ब्याज	मिश्रधन
1.	500 रु.		650 रु.
2.	625 रु.	125 रु.	
3.		280 रु.	1280 ক.
4.	1275.50	175.25	
5.		1750.00	2895.25

- प्र.2 साधारण ब्याज की गणना कीजिए:-
 - (i) मूलधन 4000 रु., दर 6%, समय 3 वर्ष
 - (ii) मूलधन 900 रु., दर 5.5%, समय 3 वर्ष
 - (iii) 480 रु., दर 7.75%, समय 2) वर्ष
 - (iv) मूलधन 525.25 रु., दर 4%, समय 2 वर्ष
 - (v) मूलधन 2400 रु., दर 6%, समय 8 माह

- प्र.3. मिश्रधन की गणना कीजिए:-
 - (i) मूलधन 2700 रु., दर 7%, समय 2 वर्ष
 - (ii) मूलधन 4000 रु., दर 5%, समय 2 वर्ष
 - (iii) मूलधन 1500 रु., दर 6 1/2%, समय 146 दिन
 - (iv) मूलधन 1000 रु., दर 7.25%, समय 8 माह

टीपः एक वर्ष में 12 माह या 365 दिन से गणना करते हैं।

मूलधन, दर तथा समय की गणना

साधारण ब्याज के प्रश्नों में मूलधन, दर एवं समय ज्ञात होने पर हम ब्याज की गणना करते हैं। अब यदि इन चार राशियों में से कोई तीन का मान ज्ञात हो तो क्या चौथी राशि का मान ज्ञात कर सकते हैं? आइए, एक उदाहरण देखें। एक व्यक्ति बैंक से 1800 रु. उधार लेता है। कुछ दिन बाद वह बैंक में जाता है तो उसे बताया गया कि मूलधन के अतिरिक्त उसे 324 रु. और देना पड़ेगा यदि ब्याज दर 6% हो तो वह कितने दिन बाद बैंक गया था?

उदाहरण 16. एक व्यक्ति ने 5000 रु. उधार लिए। 2 वर्ष पश्चात उसने 6225 रु. देकर अपना हिसाब कर दिया। ब्याज की दर ज्ञात कीजिए।

यहां साधारण ब्याज नहीं दिया गया है। परन्तु मिश्रधन दिया गया है जिससे पहले ब्याज की गणना करनी होगी।

अतः दर =
$$\frac{\text{ब्याज} \times 100}{\text{गूलधन} \times \text{सगय}}$$

$$= \frac{1225 \times 100}{5000 \times 2} = \frac{49}{4}$$

$$= \frac{12\frac{1}{4}\%}{4}$$

उदाहरण 17 10% वार्षिक गणना पर किस धन का 26 मार्च, 2005 से 19 अगस्त 2005 तक का ब्याज 140 रु. होगा?

हल यहाँ दर = 10% समय = 146 दिन
$$\frac{146}{365} = \frac{2}{5} = \frac{2}{5}$$
 = वर्ष मूलधन = ?

मूलधन =
$$\frac{\frac{साधारण ब्याज \times 100}{\text{दर x समय}}$$
$$= \frac{\frac{140 \times 100}{10 \times \frac{2}{5}}$$

$$=\frac{140\times100\times5}{10\times2} = 3500 \, \overline{\diamond}.$$

उदाहरण 18. कितने समय में 550 रु. 10 प्रतिशत वार्षिक साधारण ब्याज की दर से 660 रु हो जाएंगे? **हल** यहाँ मूलधन = 550 रु., मिश्रधन = 660 रु., दर = 10%, समय=?

ब्याज = मिश्रधन - मूलधन
=
$$660 - 550$$

= $110 \ \overline{v}$.
व्याज × 100
समय = $\overline{c} \times \overline{v}$ समय = $\overline{110 \times 100}$
= $\overline{550 \times 10}$ = 2 वर्ष

प्रश्रावली 16.4

प्र.1 निम्नलिखित सवालों में x का मान ज्ञात कीजिए-

क्र.सं.	मूलधन	दर	समय	ब्याज	प्रयुक्त	सूत्र	हल
1.	1800 रु.	8%	x	504 ক.			
2.	500 रु.	x	3 वर्ष	105 ক.			
3.	x	10%	5 वर्ष	75 रु.			
4.	x	6.25%	2.5 वर्ष	90 रु.			
5.	980 रु.	15%	sx	245 ক.			

- प्र.2. किसी धन का 121/2% वार्षिक दर से 4 वर्ष का ब्याज 250 रु. है वह धन ज्ञान कीजिए।
- प्र.3. कितने प्रतिशत वार्षिक ब्याज की दर से 3200 रु. का 2½ वर्ष का साधारण ब्याज 576 रु. होगा।
- प्र.4. कितने प्रतिशत वार्षिक ब्याज की दर से 600 रु. 3 वर्षों से 744 रु. हो जायेगा।
- प्र.5. किस राशि पर 8 मास का ब्याज 6.25 वार्षिक दर से 37.50 होगा।
- प्र.6. कितने समय में 750 रु. ९% वार्षिक ब्याज की दर से साधारण ब्याज 405 रु. होगा।
- प्र.7. समीर ने किसी बैंक से 10,000 रु. 27 सितम्बर 2004 को उधार लिए। 9 दिसम्बर 2004 को वह बैंक को ब्याज सहित 10140 रु. चुका देता है तो ब्याज दर की गणना कीजिए?
- प्र.8. कितने समय में 800 रु. 12.5% वार्षिक ब्याज की दर से 925 रु. हो जावेगा।
- प्र.9. किस वार्षिक ब्याज की दर से 400 रु. 1.5 वर्ष में 478 रु. हो जायेगा।
- प्र.10. कितने समय में कोई धन 10% वार्षिक ब्याज की दर से दुगुना हो जायेगा।

हमने सीखा

- 1. प्रतिशत का अर्थ "प्रति सैंकड़ा" से है।
- 2. प्रतिशत की सहायता से तुलना कर सकते हैं।
- 3. प्रतिशत को भिन्न, दशमलव तथा अनुपात में व्यक्त कर सकते हैं एवं भिन्न, दशमलव तथा अनुपात को भी प्रतिशत में व्यक्त कर सकते हैं।
- 4. जब वि.मू., क्र.मू. से अधिक हो तो लाभ होता है। लाभ = वि.मू. क्र.मू.

- जब क्र.मू., वि.मू. से अधिक हो तो हानि होती है। हानि = क्र.मू. वि.मू. 5.
- प्रतिशत लाभ-हानि की गणना क्रय मूल्य पर की जाती है। 6.

$$=\frac{\text{eff}}{}\times 100$$

लाभ प्रतिशत = लाम कः-मूः 7.

- हानि प्रतिशत = क्र-मू. 8. मृलधर 🗙 दर 🗙 रूमय
- सरल ब्याज 100 9.
- मिश्रधन = मूलधन + ब्याज, या सरल ब्याज = मिश्रधन मूलधन 10. सरल ब्याज × 100
- मूलधन = 11. दर×समय $=\frac{\text{even } \text{ } \text{und} \times 100}{\text{ }}$
- मृलधन 🗙 त्तमय दर 12. स्रल ब्याज×100
- मूलधन 🗙 दर समय 13.

अध्याय सत्रह

सांख्यिकी (Statistics)

भूमिका

शाला में कक्षा सजावट का कार्यक्रम आयोजित होना था। कक्षा 7वीं के विद्यार्थी यह तय नहीं कर पा रहे थे कि कक्षा के अंदर दीवारों की पुताई किस रंग से कराई जाये। उनकी शाला में हल्का पीला, गुलाबी, हल्का हरा एवं आसमानी मात्र चार रंग ही उपलब्ध थे। कक्षा नायक के कहने पर सभी विद्यार्थियों ने अपना नाम एवं पसंदीदा रंग एक पन्ने पर लिख दिया। जो निम्नांकित सारणी में प्रदर्शित है:-

豖.	विद्यार्थी का नाम	रंग
1.	राजेश	हल्का पीला
2.	रूचि	गुलाबी
3.	मीना	हल्का पीला
4.	रहीम	आसमानी
5.	हमीदा	हल्का पीला
6.	जुली	हल्का हरा
7.	अनिता	हल्का हरा
8.	फ्रांसिस	आसमानी

		n
सा	रण	П—1

豖.	विद्यार्थी का नाम	रंग
9.	केशव	हल्का पीला
10.	बसंत	आसमानी
11.	शेखर	हल्का हरा
12.	रीता	गुलाबी
13.	सुनील	हल्का पीला
14.	अनामिका	हल्का पीला
15.	बलवन्त	गुलाबी
16.	रघु	हल्का पीला

इन सूचनाओं के आधार पर क्या आप यह निर्णय ले सकते हैं कि दीवार पर कौन-से रंग से पुताई करानी है? तभी रीता को एक तरीका सूझा। उसने बोर्ड पर रंगों के नाम लिखे तथा प्रत्येक रंग को पसंद करने वाले विद्यार्थी को अपनी पसन्द के रंग के सामने अपना नाम लिखने को कहा।

अब सूची इस प्रकार बनी:-

मा	νι	Ш	-2

रंग	विद्यार्थियों के नाम
गुलाबी	रूचि, रीता, बलवन्त
हल्का पीला	राजेश, मीना, हमीदा, केशव, सुनील, अनामिका, रघु
हल्का हरा	जूली, अनिता, शेखर
आसमानी	रहीम, बसंत, फ्रांसिस

चूंकि हल्का पीला रंग पसंद करने वाले विद्यार्थियों की संख्या अधिक थी, इस कारण इसी रंग से पुताई कराने का निर्णय लिया गया।

दैनिक जीवन में क्या आपने निर्णय लेने के लिए कभी यह तरीका अपनाया है? आप, अपनी कक्षा में त्रैमासिक परीक्षा में प्रत्येक विषय में 34% से अधिक और 34% से कम अंक प्राप्त करने वालों की सूची बनाइए। क्या इस आधार पर आप बता सकते हैं कि किस विषय का परीक्षाफल सबसे अच्छा है और किस विषय का सबसे खराब?

आँकड़े(Data)

कोई भी निर्णय लेते समय आपको कुछ न कुछ जानकारियों की आवश्यकता होती है। इन आवश्यक संख्यात्मक जानकारियों को ही आँकड़े कहते हैं।

माना, आपको अपनी कक्षा के विद्यार्थियों के पढ़ने के लिए एक समाचार पत्र खरीदना है। आप कौनसा समाचार पत्र खरीदेंगे, जिसे अधिक से अधिक विद्यार्थी पढ़ना पसंद करें? यह निर्णय आप कैसे लेंगे?

सभी विद्यार्थियों ने एक सारणी तैयार की जिसमें पसंद के समाचार पत्र के सामने सभी ने अपना-अपना नाम लिखा। फिर जिस समाचार पत्र को पसन्द करने वालों की संख्या सर्वाधिक है, उसे ही खरीदने का निर्णय लिया गया।

जूली सारणियों को बार-बार देख रही थी और सोच रही थी कि इन सारणियों में नाम लिखने का कोई मतलब ही नहीं है। हमें तो मात्र यह गिनना है कि चाही गई जानकारी के पक्ष में कितने छात्र हैं। नाम न लिखकर उसके स्थान पर किसी संकेत का भी उपयोग किया जा सकता है।

क्या आप जूली की सोच से सहमत हैं? क्या ऐसा कोई तरीका सोच सकते हैं जिसमें नाम के स्थान पर केवल संकेत चिन्ह का उपयोग करके ही गणना की जा सके?

बसंत ने एक सुझाव दिया कि क्यों न प्रत्येक नाम के स्थान पर एक-एक खड़ी लकीर का उपयोग किया जाए और अन्त में सभी खड़ी लकीरों की गिनती कर ली जाए। सभी विद्यार्थी इससे सहमत थे। अनिता ने कहा "चलो हम खेलों की लोकप्रियता का क्रम पता लगावें।" अनिता ने बोर्ड में 4 खेलों के नाम लिखे और अपने-अपने पसंद के खेल के सामने प्रत्येक विद्यार्थी को एक खड़ी लकीर खींचने को कहा। सारणी कुछ इस प्रकार बनी:-

सारणी–3

खेल का नाम	टेली चिन्ह (खड़ी लकीर)	विद्यार्थियों की संख्या
फुटबाल		3
क्रिकेट		7
वॉलीबाल		1
कबड्डी		5

परन्तु इस प्रकार की सारणी में ज्यादा खड़ी लकीरों को गिनने में असुविधा होती है, इसलिए जिस प्रकार से आपने छोटी कक्षाओं में गिनती सीखते वक्त दस-दस के बण्डल बनाए थे उसी प्रकार यदि पाँच-पाँच के बण्डल बना लें तो आपको गिनने में आसानी रहेगी। हम चार खड़ी लकीर खींचकर पाँचवे के लिए इन चारों लकीरों को काटते हुए एक तिरछी लकीर (दर्शाये अनुसार) खींचते हैं। जैसे 5 के लिए-

5 के लिए

Ш

19 के लिए

iii un un III

इससे गिनने में सरलता होती है।

उपरोक्त तालिका के अनुसार क्रिकेट पसंद करने वाले विद्यार्थियों की संख्या पि अर्थात् 7 हैं। इसे ही बारम्बारता (Frequency) कहते हैं। प्रत्येक मान के लिए एक खड़ी लकीर खींचने की प्रक्रिया को टैली (Tally) लगाना कहते हैं तथा इस विधि को टैली विधि (Tally Method) द्वारा आंकड़ों का संकलन (Collection Of Data) कहते हैं एवं इससे प्राप्त सारणी को बारम्बारता सारणी (Frequency Table) कहते हैं।

आप भी इस विधि का उपयोग कर अपने आसपास के आंकड़ों को एकत्रित करने का प्रयास कीजिए।

उदाहरण-1 एक गांव के 20 घरों में बच्चों की संख्या इस प्रकार है:-

				7	सार	णी— <u>,</u>	4							
मकान नं.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
बच्चों की संख्या	2	3	2	1	3	2	0	1	3	4	2	2	1	1
मकान नं.	15	16	17	18	19	20								
बच्चों की संख्या	2	4	3	2	0	3								

इन आँकड़ों के द्वारा टैली विधि का प्रयोग कर उपयुक्त बारम्बारता सारणी का निर्माण कीजिए?

हल प्रत्येक घर में बच्चों की संख्या, उनके लिए टेली चिन्ह तथा बारम्बारता के लिए कॉलम बनाते हैं तथा प्रत्येक मान के लिए उसके सामने टैली चिन्ह लगाते हैं। पाँचवे चिन्ह को सुविधा के लिए प्रारंभिक चार चिन्हों को काटते हुए तिरछा लगाते हैं।

		_	_
ш	JUI	т —	
ZI.	1 4 - 1	_	υ

बच्चों की संख्या	टैली चिन्ह	बारम्बारता
0	11	2
1	1111	4
2	ШПП	7
3	Ш	5
4	11	2

इस सारणी में आपने बच्चों की संख्या के लिए केवल शून्य से चार तक के अंकों को ही क्यों लिखा है ? यदि इसे 1 से शुरू किया जाता तो क्या होता ? यदि सारणी में बच्चों की संख्या 0,1,2,3,4,5,6,7 तक लिखते तो क्या होता ?

प्रश्रावली 17.1

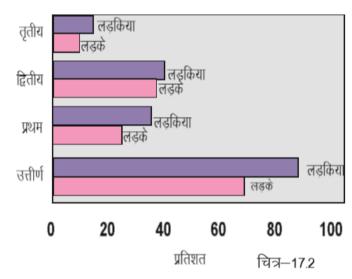
किसी कक्षा में 20 छात्रों ने गणित की जाँच परीक्षा में 5 में से निम्न अंक प्राप्त किए-1.

इन प्राप्तांकों को टैली विधि से सारणीबद्ध कीजिए।

- 1 अप्रेल 2005 से 15 अप्रेल 2005 तक किसी शहर का अधिकतम दैनिक तापमान डिग्री से ल्सियस में इस प्रकार रहा 37.8, 37.8, 37.9, 38.0, 37.9, 38.0, 38.0, 38.1, 38.1, 38.2, 38.3, 38.3, 38.2, 38.1, 38.2 प्रत्येक दिन के तापमान को टैली विधि से सारणीबद्ध कीजिए।
- 3. नीचे दिए गए सारणी में कक्षा 6वीं के छात्रों के परीक्षाफल श्रेणीवार दिए गए हैं। इनका अवलोकन कर, दिए गए प्रश्नों के उत्तर दीजिए:-

	श्रेणी		छात्रों की संख्या
प्रथम श्रेणी	12	(ক)	किस श्रेणी के छात्रों की संख्या सबसे अधिक है?
द्वितीय श्रेणी	14	(ख)	परीक्षा में बैठे छात्रों की कुल संख्या कितनी थी?
तृतीय श्रेणी	10	(ग)	कुल कितने छात्र उत्तीर्ण हुए?
अनुत्तीर्ण	04		

आँकड़ों का चित्रात्मक प्रदर्शन


राजेश आज का समाचार पत्र पढ़ रहा था, जिसमें लिखा था:-

"लड़िकयों ने लड़कों से

बाजी मारी"

इस वर्ष की 8वीं बोर्ड की परीक्षा में लड़कियाँ सभी क्षेत्रों में लड़कों से आगे रहीं।

राजेश चित्रों को देखकर सोचने लगा-"यह तो आंकड़ों के प्रदर्शन का अच्छा तरीका है। इन चित्रों को देखकर बड़े आसानी से यह समझा जा सकता है कि छात्राओं का परीक्षाफल छात्रों से सभी प्रकार से अच्छा है।' ' ऐसा ही कुछ हम जब प्रार्थना में लाइन बनाकर खड़े होते हैं, तब देखने को मिलता है। लाइनों की लम्बाई की सहायता से कक्षा के छात्र संख्या की तुलना की जा सकती है?

राजेश ने अपने साथियों से कहा- ''क्यों न सारणी-3 में एकत्रित आँकड़ों की मदद से खेलों की लोकप्रियता को चित्र रूप में प्रदर्शित किया जाए?''

सारणी-3 में कुल विद्यार्थियों की संख्या 16 थी। इनमें से फुटबाल का खेल पसंद करने वाले 3, क्रिकेट पसंद करने वाले 7, वॉलीबॉल पसंद करने वाले 1, कबड्डी पसंद करने वाले 5, विद्यार्थी थे। इन्हें चित्र रूप में किस प्रकार प्रदर्शित किया जा सकता है?

जूली ने कहा, "यदि हम प्रत्येक छात्र के लिए एक चित्र बनाएं, तो फुटबाल के आगे 3 चित्र, क्रिकेट के आगे 7 चित्र, वॉलीबॉल के आगे 1 और कबड्डी के आगे 5 चित्र बनेंगे-

 块大大

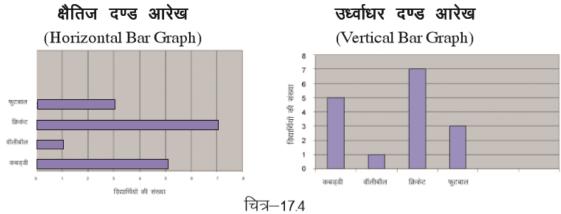
 原命
 大大大大大大

 可信
 大大大大大大

 可不易
 大大大大大大

 中本別
 大大大大大

 中本別
 大大大大大


 中本別
 大大大大

 中本別
 日初一17.3

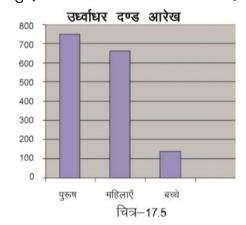
इसी प्रकार चित्रों के द्वारा प्रदर्शन को चित्र आरेख (DDDDDDDDDD) कहा जाता है। यह आसानी से समझने योग्य होता है एवं चित्रों को देखकर निष्कर्ष निकाला जा सकता है।

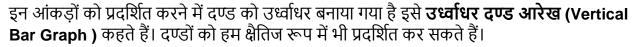
दण्ड आरेख

चित्र आरेख विधि से प्रदर्शन में हमें बहुत से चित्रों को बनाने की आवश्यकता होती है जो कभी-कभी अव्यावहारिक हो जाती है। किन्तु यदि हम प्रत्येक छात्र के लिए 1 सेमी लम्बाई लेकर यदि दण्ड बनाएं तब आंकड़ों के प्रदर्शन में और सरलता होगी तथा इन दण्डों को क्षैतिज अथवा उर्ध्वाधर दोनों तरीकों से बनाया जा सकता है।

इन आरेखों में दण्डों की चौड़ाई समान रखी गयी है। इन दण्ड आलेखों को देखकर इन खेलों की लोकप्रियता का अन्दाजा आसानी से लगाया जा सकता है। उक्त निरूपण में विद्यार्थियों की संख्या कम थी अतः प्रत्येक विद्यार्थी के लिए दण्ड की लम्बाई 1 सेमी लेकर उसे कॉपी में आसानी से दर्शाया जा सकता है।

किन्तु यदि विद्यार्थियों की संख्या अधिक हो तो ऐसी स्थिति में उसे कॉपी पर कैसे दर्शाएंगे? ऐसी स्थिति में दण्डों की ऊँचाई का निर्धारण करना मुख्य समस्या है।


आइए, इस पर विचार करें-

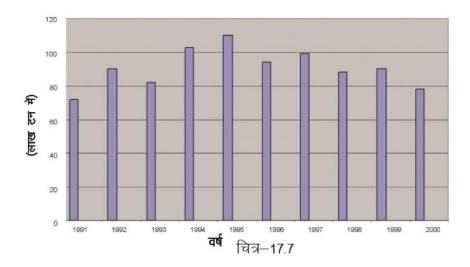

राजेश जिस मोहल्ले में रहता है वहां 750 पुरुष, 660 महिलाएं एवं 140 बच्चे हैं। हमें इसे आरेख के द्वारा प्रदर्शित करना है।

इन आँकड़ों के दण्ड के रूप में प्रदर्शित करने के लिए दण्डों की ऊँचाई क्या होनी चाहिए? यदि हम प्रत्येक व्यक्ति के लिए 1 सेमी की ऊँचाई लें तो पुरुषों के लिए 750 सेमी, महिलाओं के लिए 660 सेमी एवं बच्चों के लिए 140 सेमी का दण्ड बनाना होगा। किन्तु इसे अपने कॉपी में बनाना संभव नहीं है।

यदि हम प्रति 10 व्यक्तियों के लिए 1 सेमी. का दण्ड लें तब ये दण्ड क्रमशः 75 सेमी, 66 सेमी एवं 14 सेमी के दण्ड बनेंगे, किन्तु इसे भी हम अपनी कॉपी में प्रदर्शित नहीं कर सकेंगे।

यदि हम प्रति 100 व्यक्तियों के लिए 1 सेमी का दण्ड लें तब दण्ड की लम्बाईयाँ क्रमशः 7.5 सेमी, 6.6 सेमी एवं 1.4 सेमी होगी। जो कि आसानी से हमारी कॉपी में बनाई जा सकती है। तो आइए, देखते हैं कि इसे किस प्रकार से हम एक दण्ड चित्र के माध्यम से दर्शाएंगे- उर्ध्वाधर दण्ड आरेख

यदि हम दण्डों को क्षैतिज रूप में प्रदर्शित करें तो उसे क्षैतिज दण्ड आरेख ;भ्वतप्रवदजंस ठंत ळतंचीद्ध कहेंगे। (चित्र-17.6)

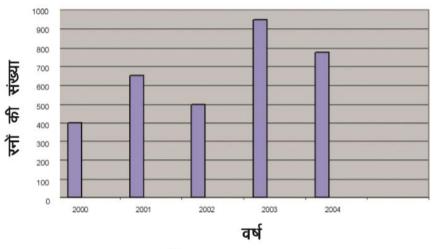

अनेता के मन में एक प्रश्न उठ रहा था कि दण्ड आरेख की क्या उपयोगिता है? क्योंकि बारम्बारता सारणी के अवलोकन से भी हमें वही जानकारी मिल जाती है जो दण्ड आरेख से मिलती है। आइये अनिता के इस प्रश्न का हल ढूंढें।

नीचे वर्ष 1991 से वर्ष 2000 तक गेहूँ के उत्पादन के आंकड़े दिए गए हैं:-

सारणी-6

वर्ष	गेहूँ का उत्पादन (लाख टन में)					
1991	72					
1992	90					
1993	82					
1994	103					
1995	110					
1996	94					
1997	99					
1998	88					
1999	90					
2000	78					

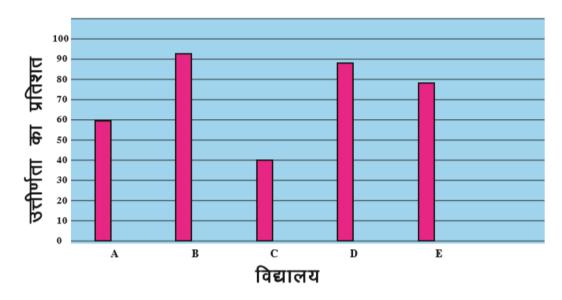
इन आंकड़ों को दण्ड-आरेख द्वारा इस प्रकार व्यक्त कर सकते हैं:-



इस दण्ड आरेख को देखकर क्या आप बता सकते हैं कि किस वर्ष में गेहूँ का उत्पादन सबसे कम और किस वर्ष में सबसे अधिक हुआ? इससे और क्या-क्या जानकारियां आपको मिल सकती है? लिखिए।

आप पायेंगे कि वर्ष 1995 में सबसे अधिक तथा वर्ष 1991 में सबसे कम गेहूँ का उत्पादन हुआ है। यह भी पाते हैं कि 1992 एवं 1999 दोनों वर्षों में गेहूं उत्पादन एक समान हुआ है। क्या बारम्बारता सारणी को केवल देखकर ऐसा ही निष्कर्ष निकाल पायेंगे?

यह स्पष्ट है कि सिर्फ आंकड़ों को देखकर किसी निष्कर्ष में पहुंचना कठिन होता है। इसके लिए सभी दिये गए आंकड़ों का सूक्ष्म अध्ययन जरूरी है जबिक दण्ड आरेख को केवल देखकर ही कह सकते हैं कि किस वर्ष उत्पादन सबसे अधिक और किस वर्ष सबसे कम हुआ है। अतः दण्ड आरेख का मुख्य लाभ यह है कि इसे एक बार देखकर ही समझ में आ जाता है तथा अन्य आँकड़ों से तुलना बड़ी आसानी से की जा सकता है।


उदाहरण-2 नीचे दिए गए दण्ड आलेख में अरूण के द्वारा वर्ष 2000 से 2004 तक बनाए गए रनों की संख्या दी गई है। इन आरेखों का अवलोकन कर, दिए गए प्रश्नों का उत्तर दीजिए:-

चित्र-17.8

- (i) इस दंड आरेख से क्या जानकारी मिलती है?
- (ii) वह वर्ष बताइए जिसमें अरूण द्वारा बनाये गये रनों की संख्या न्यूनतम है?
- (iii) किस वर्ष में अरूण ने सर्वाधिक रन बनाए?
- (iv) क्या अरूण हर वर्ष पिछले वर्ष से अच्छा खेलता है?
- हल (i) दिए गए दण्ड आरेख वर्ष 2000 से 2004 तक में अरूण द्वारा बनाए गए रनों की संख्या को प्रदर्शित करता है।
 - (ii) चूंकि वर्ष 2000 के संगत दण्ड की ऊँचाई सबसे कम है, अतः वर्ष 2000 में बनाये गये रनों की संख्या न्यूनतम हैं।
 - (iii) चूंकि वर्ष 2003 के संगत दण्ड सबसे अधिक ऊँची हैं, इसलिए इसी वर्ष सबसे अधिक रन बनाये गये।
 - (vi) नहीं, क्योंकि अरूण ने 2002 में 2001 से कम रन बनाए उसी प्रकार 2004 में भी 2003 से कम रन बनाए।

उदाहरण-3 नीचे दिये दण्ड आरेख में विद्यालयों A,B,C,D के उत्तीर्ण विद्यार्थियों का प्रतिशत दिया गया है इनका अवलोकन कर निम्न प्रश्नों के उत्तर दीजिए-

- (i) किस विद्यालय में उत्तीर्ण छात्रों का प्रतिशत सबसे कम रहा?
- (ii) किस विद्यालय में 90 प्रतिशत से अधिक विद्यार्थी उत्तीर्ण हुए?
- (iii) किस विद्यालय में सबसे कम प्रतिशत विद्यार्थी अनुत्तीर्ण हुए?
- (iv) कितने विद्यालयों में उत्तीर्ण प्रतिशतता 60 या इससे अधिक रही?
- हल (i) विद्यालय C में सबसे कम (40%) छात्र उत्तीर्ण हुए।
 - (ii) विद्यालय B में 90% में अधिक (95%) विद्यार्थी उत्तीर्ण हुए।
 - (iii) विद्यालय B में सबसे कम प्रतिशंत छात्र अनुत्तीर्ण हुए क्योंकि यहाँ उत्तीर्ण प्रतिशतता सबसे अधिक है।
 - (iv) विद्यालय A,B,C,D एवं E में उत्तीर्ण छात्रों की प्रतिशतता 60% या उससे अधिक रही।

प्रश्नावली 17.2

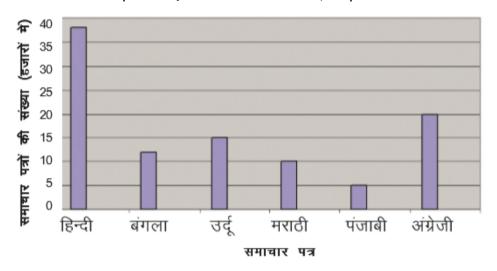
1. नीचे दी गई सारणी में किसी कंपनी की 5 वर्षों की वार्षिक आय दी गई है। आंकड़ों को दंड आरेख द्वारा दर्शाइए-

वर्ष	1996	1997	1998	1999	2000
वार्षिक आय	10	20	15	12	22
(100000 रुपयों में)					

2. निम्न सारणी अलग-अलग टी.वी. सेट के खरीददारों की सूचना देती है। इन आंकड़ों को दंड आरेख का रूप दीजिए।

ब्रांड	% खरीददार
p	25
q	30
r	15
S	10
T	10
अन्य	10

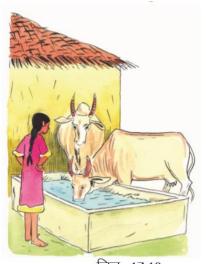
3. निम्न सारणी एक विद्यालय की वार्षिक परीक्षा में छात्रों के औसत प्राप्तांकों को दर्शाती है। आंकड़ों को दंड आरेख द्वारा प्रदर्शित कीजिए।


विषय	छात्रों के औसत प्राप्तांक (%)
अंग्रेजी	55
गणित	60
विज्ञान	65
सामाजिक विज्ञान	90
हिन्दी	70

4. शुभम् द्वारा एक सप्ताह (प्रातः 11 बजे) के एकत्रित तापमान इस प्रकार है।

दिन	सोम	मंगल	बुध	गुरू	शुक्र	शनि	रवि
तापमान °C	50	45	40	45	35	40	48

इन आंकड़ों को दण्ड़ आरेख द्वारा प्रदर्शित कीजिए।


5. निम्न दंड आरेख में इन आंकडों को दण्ड आरेख द्वारा प्रदर्शित कीजिए। एक शहर में छः भाषाओं में छपे (दैनिक) समाचार पत्रों की बिक्री की संख्या को निरूपित किया गया है। आँकड़े निकटतम हजार में है। आरेख का अध्ययन कीजिए और निम्नलिखित प्रश्नों के उत्तर दीजिए:-

- 1. हिन्दी, बंगला, उर्दु, मराठी, पंजाबी और अंग्रेज़ी पढ़े-जाने वाले प्रत्येक प्रकार के समाचार पत्रों की संख्या बताइये।
- 2. पंजाबी की तुलना में मराठी में कितने अधिक समाचार पत्र पढ़े जाते हैं?
- वह भाषा बताइये जिसमें पढ़े जाने वाले समाचार पत्रों की संख्या न्यूनतम है।
- विभिन्न भाषाओं में पढ़े जाने वाले समाचार पत्रों की संख्याओं को बढ़ते क्रम में लिखिए।

समान्तर माध्य (Mean)

जानवरों को पानी पिलाने में राधा बहुत आनन्द अनुभव करती है। वह रोज़ एक बड़े टंकी में जानवरों के लिए पानी रख देती है और हिसाब भी रखती है कि प्रत्येक दिन कितने जानवर पानी पी रहे है। उसके द्वारा लिखे गए पिछले हफ्ते का हिसाब कुछ इस प्रकार है:-

सोमवार - 12, मंगलवार - 15, बुधवार - 13, बृहस्पतिवार - 11, शुक्रवार - 13, शनिवार - 13 रविवार - 14

क्या आप बता सकते हैं कि राधा प्रतिदिन औसतन कितने जानवरों को पानी पिलाती है। क्रिकेट खिलाड़ी A ने अपनी दस पारियों में 60, 70, 15, 90, 72, 45, 11, 77, 125, 200 रन बनाये। इसी तरह B खिलाड़ी ने अपनी छः पारियों में 220, 110, 70, 37, 15, 07 रन बनाये। क्या आप बता सकते है कि किस खिलाड़ी का प्रदर्शन अच्छा रहा? इस तरह की तुलना हम औसत निकाल कर आसानी से कर सकते है। इसी प्रकार दैनिक जीवन में हम कई स्थानों पर औसत का उपयोग करते हैं। जैसे -

- (1) आपकी कक्षा में पढ़ने वाले विद्यार्थियों की औसत आयु 14 वर्ष है।
- (2) आपके रात में सोने का औसत समय 8 घंटे है।
- (3) दैनिक समाचार पत्रों का औसत मूल्य 2.50 रुपये है।
- (4) कक्षा में विद्यार्थियों की औसत उपस्थिति 45 है।
- (5) इस वर्ष रायपुर में औसत से कम वर्षा हुई।

उपरोक्त उदाहरणों में आप देख रहे है कि कक्षा के विद्यार्थियों की औसत आयु 14 वर्ष है। रात में सोने का औसत समय 8 घंटे है। इनसे तात्पर्य यह नहीं है कि कक्षा के प्रत्येक छात्र का आयु 14 वर्ष है या रोज़ रात में आप 8 घंटे सोते हैं। न ही यह अधिकतम व न्यूनतम है।

वास्तव में, औसत दिए गए प्रेक्षणों (ऑंकड़ों) के योग में प्रेक्षणों (ऑंकड़ों) की संख्या का भाग देने से प्राप्त होता है। इसे समान्तर माध्य भी कहते हैं। इसे संकेत м द्वारा दर्शाते हैं।

अब हम आसानी से ज्ञात कर सकते हैं कि राधा प्रतिदिन औसतन कितने जानवरों को पानी पिलाती है।

औसत =
$$\frac{12+15+13+11+13+14}{7} = \frac{91}{7} = 13$$

अतः राधा औसतन 13 जानवरों को प्रतिदिन पानी पिलाती है।

अब आप स्वयं खिलाड़ी A व B की पारियों का समान्तर माध्य ज्ञात कर बताइए कि किस खिलाड़ी का प्रदर्शन अच्छा रहा।

क्रियाकलाप 2.

आप अपने परिवार के सदस्यों की औसत आयु निकालिए।

क्रियाकलाप 3.

अर्द्धवार्षिक परीक्षा में सभी विषयों के प्राप्तांकों का औसत निकालिए।

उदाहरण 4. एक फल की दुकान पर पांच टोकरियों में 46 किग्रा, 21 किग्रा, 18 किग्रा, 25 किग्रा. तथा 35 किग्रा. सेब रखें हैं। इनका समान्तर माध्य ज्ञात कीजिए।

हलः समान्तर माध्य (M) =
$$\frac{46 + 21 + 18 + 25 + 35}{5} = \frac{145}{5} = 29$$
 किग्रा.

उदाहरण 5. प्रथम 10 प्राकृत संख्याओं का समान्तर माध्य ज्ञात कीजिए। **हल**ः प्रथम दस प्राकृत संख्याएँ निम्नांकित हैं - 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

समान्तर माध्य (M) =
$$\frac{\frac{1}{1}}{\frac{1}{1}}$$
 समान्तर माध्य (M) = $\frac{1+2+3+4+5+6+7+8+9+10}{10}$ समान्तर माध्य (M) = $\frac{55}{10} = 5.5$ किग्रा.

बहुलक (Mode)

विद्यालय द्वारा कक्षा आठवीं के छात्रों को दीपावली अवकाश में किसी दर्शनीय स्थल का भ्रमण कराने का निश्चय किया गया। प्रधानाध्यापक ने सिरपुर, रतनपुर, जगदलपुर तथा अम्बिकापुर में से एक स्थान का चुनाव करने का निर्देश दिया। कुछ छात्र सिरपुर तो कुछ छात्र जगदलपुर जाना चाहते हैं। स्थान तय नहीं होने के कारण, कक्षाध्यापक ने चारों स्थानों के नाम श्यामपट्ट पर लिखकर बच्चों से हाथ खड़े करवाकर टैली/गणना चिह्न द्वारा बारम्बारता सारणी बनाई जो निम्नानुसार थी-

सारणी 7

दर्शनीय स्थल	टैली चिह्न	विद्यार्थियों की संख्या
सिरपुर	IHI II	7
जगदलपुर		13
रतनपुर	Ш	5
अम्बिकापुर	Ш	5

सारणी देखकर कक्षाध्यापक ने कहा सर्वाधिक 13 विद्यार्थी जगदलपुर जाना चाहते हैं, अतः हमें जगदलपुर जाना चाहिए।

दैनिक जीवन में भी ऐसी कई घटनाएं होती हैं जिनका चयन इसी प्रकार करते हैं। जैसे- रेडिमेड कपड़े की दुकान में हमें 38 या 40 नम्बर की ही शर्ट मिलती हैं। 39 नम्बर की शर्ट मांगने पर हमें नहीं मिलती है, क्योंकि उसकी मांग कम है। कम्पनी उसी नम्बर का शर्ट अधिक बनाती है जिसकी मांग बाजार में अधिक है।

चयन का यह आधार ही बहुलक है। अर्थात् बहुलक दिए गये प्रेक्षणों का वह मान है जो सर्वाधिक बार दोहराया गया हो। इसे संकेत M0 द्वारा दर्शाते हैं।

उदाहरण 6. दिए गये आंकड़ों से बहुलक ज्ञात कीजिए। 21, 23, 28, 25, 23, 30, 23

हलः दिए गये आंकडों से स्पष्ट है कि यहाँ अंक 23 सबसे अधिक बार (3 बार) आया है, अतः बहुलक 23 होगा अर्थात् M $_0 \,=\, 23$

उदाहरण 7. एक फुटबाल टीम के 11 खिलाड़ियों द्वारा पहने गए जूतों के नाप के नम्बर निम्न प्रकार हैं -

6, 4, 5, 6, 7, 7, 6, 5, 6, 7, 8 बहुलक ज्ञात कीजिए।
हल:- दिए गये नम्बरों को आरोही क्रम में व्यवस्थित कर लिखने पर
4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8
स्पष्ट है कि यहाँ 6 नम्बर सबसे अधिक बार (4 बार) आया है।
अतः बहुलक 6 होगा अर्थात Mo = 6

माध्यिका (Median)

उदाहरण 8. एक कक्षा के 15 छात्रों के वार्षिक परीक्षा में पूर्णांक 100 में से प्राप्तांक निम्नानुसार हैं-

- (A) 15, 35, 16, 25, 45, 76, 90, 99, 50, 16, 57, 60, 86, 17, 95 बताइये इनमें से कितने छात्रों के अंक आधे से अधिक हैं। यहाँ प्राप्तांकों को देखने से यह स्पष्ट नहीं हो रहा है। आइए, इन्हें हम आरोही (बढ़ते) क्रम में व्यवस्थित करके देखें -
- (B) 15, 16, 16, 17, 25, 35, 45, 50, 57, 60, 76, 86, 90, 95, 99
- (अ) प्राप्तांकों (A) के आधार पर निम्न प्रश्नों के उत्तर दीजिए-
 - 1. दिए गए प्राप्तांकों (पदों) में मध्य पद है?
- 2. मध्य पद के प्राप्तांक से कम प्राप्तांक वाले कितने पद हैं?
- 3. मध्य पद के प्राप्तांक से अधिक प्राप्तांक वाले कितने पद हैं?
- 4. क्या मध्य पद के प्राप्तांक से कम एवं अधिक प्राप्तांक वाले पदों की संख्या समान (बराबर) है?
- (ब) व्यवस्थित प्राप्तांकों (B) के आधार पर प्रश्नों के उत्तर दीजिए -
 - 1. व्यवस्थित प्राप्तांकों में मध्य पद के प्राप्तांक क्या हैं ?
 - 2. मध्य पद के प्राप्तांक के कम प्राप्तांक वाले कितने पद हैं?

- 3. मध्य पद के प्रप्तंक से अधिक प्राप्तांक वाले कितने पद हैं?
- 4. क्या मध्य पद के प्राप्तांक से कम एवं अधिक प्राप्तांक वाले पदों की संख्या समान हैं?

पदों को घटते क्रम या बढ़ते क्रम में रखने पर ही मध्य पद का निर्धारण होता है। इसी मध्य पद को माध्यिका कहते हैं।

अर्थात् ''दिए गए आँकड़ों को घटते या बढ़ते क्रम में व्यवस्थित करने पर उनके बीच वाला मान ही मध्यिका है।''माध्यिका को संकेत डक द्वारा दर्शाते हैं।

[A] माध्यिका ज्ञात करना जब आँकड़ों की संख्या छ विषम हो

जब दिए गए आँकड़ों की संख्या विषम संख्या में हो, तो सर्वप्रथम उनको आरोही या अवरोही क्रम

$$\mathbf{M}_{\mathrm{d}} = \left(rac{N+1}{2}
ight)$$
 पद का मान ज्ञात करते हैं। प्राप्त मान ही माध्यिका है।

उदाहरण 9. 3, 5, 10, 9, 8, 14, 6, 12, 13, 11, 7 की माध्यिका ज्ञात कीजिए। **हल:** आँकडों को आरोही क्रम में व्यवस्थित करके लिखने पर-

3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 (यहाँ कुल पदों की संख्या 11 अर्थात विषम है)

$$M_{\rm d} = \left(\frac{N+1}{2}\right)$$
 and $M_{\rm d} = \left(\frac{11+1}{2}\right)$ and $M_{\rm d} = 6$ and $M_{\rm d} = 6$

[B] माध्यिका, जब आँकड़ों की संख्या छ सम हो

जब दिए गए आँकड़े सम संख्या में हैं तो उन्हें आरोही या अवरोही क्रम में व्यविधत करने पर मध्य में दो संख्याएँ होती हैं। ऐसी स्थिति में हम उन दोनों मध्य संख्याओं का माध्य ज्ञात कर माध्यिका निकालते है।

अर्थात्
$$\mathbf{M}_{\mathtt{d}} = \frac{}{}$$
 वॉ पद का मान $+$ $\frac{N}{2} + 1$ वॉ पद का मान $}{}$

उदाहरण 10. बंटन 5, 9, 4, 6, 12, 8 की माध्यिका ज्ञात कीजिए। **हल**: दिये गये आंकड़ों को आरोही क्रम में व्यवस्थि करने पर 4, 5, 6, 8, 9, 12 यहाँ N = 6 (सम संख्या है)

$$\begin{aligned} &\frac{6}{6} \underbrace{\ddot{\text{qi}}}_{\text{di}} \underbrace{\text{पद का Hin}}_{\text{di}} + \underbrace{\begin{pmatrix} 6 \\ 1 \end{pmatrix}}_{\text{di}} \underbrace{1}_{\text{di}} \underbrace{\ddot{\text{qi}}}_{\text{di}} \underbrace{\text{पa an Hin}}_{\text{Hin}} + \underbrace{1}_{\text{di}} \underbrace{\text{di}}_{\text{di}} \underbrace{\text{ua an Hin}}_{\text{di}} + \underbrace{1}_{\text{di}} \underbrace{\text{di}}_{\text{di}} \underbrace{\text{ua an Hin}}_{\text{din}} + \underbrace{1}_{\text{di}} \underbrace{\text{di}}_{\text{di}} \underbrace{\text{ua an Hin}}_{\text{din}} + \underbrace{1}_{\text{di}} \underbrace{\text{di}}_{\text{di}} \underbrace{\text{ua an Hin}}_{\text{din}} + \underbrace{1}_{\text{di}} \underbrace{\text{di}}_{\text{din}} \underbrace{\text{di}}_{\text{din}} \underbrace{\text{di}}_{\text{din}} + \underbrace{\text{di}}_{\text{din}} \underbrace{\text{di}}_{\text{din}} \underbrace{\text{di}}_{\text{din}} + \underbrace{\text{di}}_{\text{din}} \underbrace{\text{di}}_{\text{din}} \underbrace{\text{di}}_{\text{din}} + \underbrace{\text{di}}_{\text{din}} + \underbrace{\text{di}}_{\text{din}} \underbrace{\text{di}}_{\text{din}} \underbrace{\text{di}}_{\text{din}} + \underbrace{\text{di}}_{\text{din}} \underbrace{\text{di}}_{\text{din}} \underbrace{\text{di}}_{\text{din}} + \underbrace{\text{di}}_{\text{din}} \underbrace{\text{di}}_{\text{din}} \underbrace{\text{di}}_{\text{din}} + \underbrace{\text{di}}_{\text{din}} \underbrace{\text{di}}_{\text{din}} \underbrace{\text{di}}_{\text{din}} \underbrace{\text{di}}_{\text{din}} + \underbrace{\text{di}}_{\text{din}} \underbrace{\text{di}}_{\text{din}} \underbrace{\text{di}}_{\text{din}} \underbrace{\text{di}}_{\text{din}} + \underbrace{\text{di}}_{\text{din}} \underbrace{\text{din}}_{\text{din}} \underbrace{\text{di}}_{\text{din}} \underbrace{\text{di}}_{\text{din}} \underbrace{\text{din}}_{\text{din}} \underbrace{\text{din}}_{$$

प्रश्नावली 17.3

- प्र.1. समान्तर माध्य ज्ञात कीजिए। 81, 74, 69, 73, 91, 55, 61
- प्र.2. 50 से 70 के मध्य सम संख्याओं का माध्य ज्ञात कीजिए।
- प्र.3. माध्यिका ज्ञात कीजिए। 4, 5, 10, 6, 7, 14, 9, 15
- प्र.4. एक कक्षा के 11 छात्रों का भार (किलोग्राम में) निम्न प्रकार हैं-25, 27, 29, 32, 30, 28, 26, 31, 35, 41, 34 इनकी माध्यिका ज्ञात करो।
- प्र.5. कक्षा आठवीं के छात्रों ने विज्ञान प्रतियोगिता में निम्नानुसार अंक प्राप्त किये-83, 61, 48, 73, 76, 52, 67, 61, 79 उपरोक्त आंकड़ों से माध्यिका की गणना कीजिए।
- प्र.6. दिये गये आँकड़ों से बहुलक प्राप्त कीजिए। 7, 5, 9, 9, 3, 1, 9, 7, 5, 3, 1, 1, 9, 7, 7, 5, 5, 5, 3, 1, 5, 3, 5, 1, 5, 7, 7, 9, 9, 1
- प्र.7. निम्न बंटन का बहुलक ज्ञात कीजिए। 5, 3, 2, 2, 4, 5, 3, 3, 4, 3, 5, 3
- प्र.8. प्रथम पाँच विषम प्राकृत संख्याओं का समान्तर माध्य ज्ञात कीजिये।
- प्र.9. संख्याएँ 8,5,x,6,10,5 का माध्य 7 हैं। x का मान ज्ञात कीजिए।

परिवर्तनशीलता

परिवर्तन प्रकृति का महत्वपूर्ण घटक है। प्रकृति में निरन्तर कई प्रकार के परिवर्तन होते रहते हैं। इनमें से कुछ एक निश्चित दिशा में होते हैं जैसे - बाल्यावस्था, युवावस्था फिर वृद्धावस्था का आना, बाल्यावस्था में बच्चों की ऊँचाई एवं वजन का बढ़ना, पौधों का बढ़ना आदि। इनसे अलग एक परिवर्तन वे हैं जिनमें निरन्तरता, निश्चितता एवं क्रमिकता होती है जैसे सूर्य का प्रातःकाल उदित होना शाम को अस्त होना, पृथ्वी का सूर्य के चारों ओर चक्कर लगााना, दिन-रात का होना, ऋतुओं का परिवर्तन आदि।

जीवन की इस परिवर्तनशीलता का अनुमान लगाया जा सकता है क्योंकि इन परिवर्तनों में क्रमिक बदलाव होता है। दिन के बाद रात होगी ही पुनः दिन नहीं। गर्रमी के बाद वर्षा ऋतु आएगी कोई अन्य ऋतु नहीं।

प्रकृति के कुछ परिवर्तन ऐसे भी हैं जिनमें अनिश्चितता होती है। इन परिवर्तनों के बारे में निश्चित

परिणाम नहीं बताया जा सकता है। जैसे- बादल छा जाने पर वर्षा का होना।

इसी प्रकार हमारे आस-पास घटने वाली कुछ घटनाएँ ऐसी हैं जिनके घटने के परिणाम का हम निश्चित अनुमान नहीं लगा सकते, केवल उसकी संभावना ही व्यक्त कर सकते हैं। जैसे किसी सिक्के को उछालने पर उसका चित या पट आना, किसी पासे को उछालने पर कोई निश्चित बिन्दु ऊपरी सतह पर प्राप्त होना, ताश के पत्तों में से एक पत्ता खींचने पर कोई निश्चित पत्ता निकलना, किसी थैले में रखी कई रंगों की गेंदों में से एक गेंद निकालने पर किसी निश्चित रंग की गेंद का निकलना आदि।

इस प्रकार की घटनाओं में परिणाम की मात्र संभावना ही बताई जा सकती है, निश्चित परिणाम नहीं बताया जा सकता साथ ही इस प्रकार की घटनाओं की पुनरावृत्ति होने पर पिछले परिणाम के आधार पर अगले परिणाम को भी नहीं बताया जा सकता। यदि कोई सिक्का पहली उछाल में चित आया है तो अगली उछाल में फिर दोनों संभावनाएँ रहती हैं। वह चित भी आ सकता है पट भी।

इस प्रकार की घटनाओं में किसी घटना के घटित होने पर प्राप्त होने वाले संभावित परिणामों की संख्या घटना की प्रकृति पर निर्भर करती है जैसे -

- 1. किसी सिक्कें को उछालने पर संभावित परिणाम दो में से कोई एक होगा-
 - (i) चित आना
 - (ii) पट आना
- 2. लूडो के पासे को उछालने पर उसकी ऊपरी सतह पर कोई बिन्दु आने के संभावित परिणाम छह में से कोई एक होगा -
 - (i) 1 बिन्दु आना
 - (ii) 2 बिन्दु आना
 - (iii) 3 बिन्दु आना
 - (iv) 4 बिन्दु आना
 - (v) 5 बिन्दु आना
 - (iv) 6 बिन्दु आना
- 3 किसी थैले में यदि एक लाल, एक हरी, एक सफेद व एक काली गेंदें हों तो एक गेंद निकालने पर परिणाम चार में से कोई एक होगा -

वह गेंद

- (i) लाल होगी
- (ii) हरी होगी
- (iii) काली होगी
- (iv) सफेद होगी

स्पष्ट है कि घटनाओं के आधार पर उनके संभावित परिणामों की संख्या निर्धारित होती है।

क्रियाकलाप 4

बताइए निम्न घटनाएं निश्चित हैं या अनिश्चित ?

- 1. दिन के बाद रात का होना
- 2. सिक्के को उछालने पर चित आना
- 3. ग्रीष्म ऋतु के बाद वर्षा ऋतु का आना
- 4. बादल छाँ जाने पर वर्षा काँ होना
- 5. पासा फैंकने पर उसके ऊपरी फलक पर छह बिन्दु आना

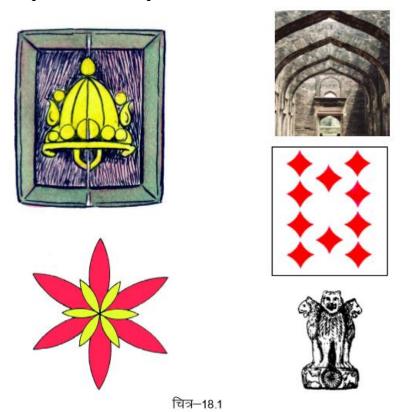
- 6. छोटे बच्चों में आयु के साथ-साथ ऊँचाई में परिवर्तन
- 7. किसी व्यक्ति का बीमार पडना
- 8. उम्र का बढना

8.

हमने सीखा

- चित्र संकेतों द्वारा सांख्यिकीय आंकडों का ग्राफीय निरूपण आंकडों का चित्र आरेख कहलाता है। 1.
- दण्ड आरेख बराबर दूरी पर लिए गए एक समान चौडाई वाले क्षैतिज या उर्ध्वाधर दण्डों (आयतों) 2. द्वारा संख्यात्मक आंकडों का चित्रीय निरूपण होता है।
- दण्ड आरेख को देखकर बहुत से निष्कर्ष आसानी से निकाले जा सकते हैं। 3.
- औसत माध्य वह एकमात्र अंक है, जो आंकडों के समूहन को प्रदर्शित करता है। 4.
- 5. समान्तर माध्य = समस्त आंकडों का योगफल आंकडों की कुल संख्या
- माध्यिका ज्ञात करते समय आंकड़ों को घटते या बढ़ते क्रम में रखा जाता है। 6.
- माध्यिका घटते या बढ़ते क्रम में व्यवस्थित आंकड़ों के समूहन के मध्य का अंक होता है। 7.

(i)
$$M_d = \frac{N+1}{2}$$
 वां पद (जब N विषम संख्या में हो) (ii) $M_d = \frac{\left[\frac{N}{2} \text{ वॉ } \text{ पद} + \left(\frac{N}{2} + 1\right) \text{ वॉ } \text{ पद}\right]}{2}$ (जब N सम संख्या में हो)

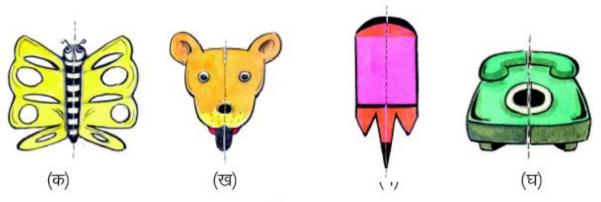

- आंकड़ों में सर्वाधिक बारम्बारता वाला आंकड़ा बहुलक होता है। 9.
- परिवर्तनशीलता प्रकृति का महत्वपूर्ण घटक है। 10.
- प्रकृति के कुछ परिवर्तन निरन्तर, निश्चित व क्रमिक होते हैं, जिनका अनुमान लगाया जा सकता है। 11. जबिक कुछ परिवर्तनों का अनुमान नहीं लगाया जा सकता।
- हमारे आस-पास की कुछ घटनाएं ऐसी होती हैं जिनके घटित होने के परिणाम का अनुमान नहीं 12. लगाया जा सकता मात्र उसकी संभावना व्यक्त की जा सकती है।
- किसी घटना के संभावित परिणामों की संख्या उसकी प्रकृति पर निर्भर होती है। 13.

अध्याय अठारह

सममिति (Symmetry)

हमारे आसपास बहुत सी आकृतियाँ हैं। हम फूलों को देखते हैं, सुन्दर चित्रों, इमारतों और अन्य चीज़ों को देखते हैं। इन सभी में हमें सुडौलपन व एक प्रकार की तारतम्यता दिखती है। इनमें से कई आकृतियाँ संतुलित अनुपात में हैं। कई ऐसी भी हैं जो कई जगहों में एक सी दिखती हैं। कई ऐसी भी है जो अपने आप में दो एक जैसी आकृतियों से मिल कर बनी दिखती हैं। ये सब आकृतियाँ सममित आकृतियाँ हैं।

दिन-प्रतिदिन हर जगह जब हम ऐसी आकृतियों को देखते हैं जो बराबर संतुलित अनुपात में हों तब हम कहते हैं, ये आकृतियाँ सममित आकृतियाँ हैं।


ये सब आकृतियाँ सुन्दर लगती हैं। इनकी बनावट में संतुलित अनुपात है और सममिति है।

क्रियाकलाप 1

सममिति अक्ष

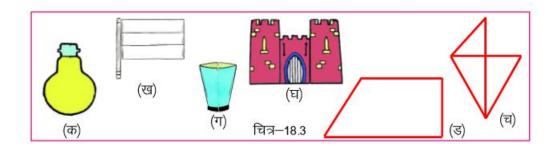
दी गई आकृतियों को देखें। यदि हम इनमें से किसी एक आकृति को इस तरह मोड़ पाएं कि इसका आधा बायाँ भाग, आधे दायें भाग से अथवा आधा ऊपर का भाग, नीचे के आधा भाग से पूर्णतया मिलता जुलता हो, तब हम कहेंगे कि आकृति में सममिति की रेखा है। ऐसे में दोनों आधे भाग एक दूसरे के प्रतिबिम्ब हैं।

चित्र 2 (क) देखें। टूटी रेखा पर मोड़ने पर चित्र के दोनों हिस्से ठीक एक दूसरे को ढक लेंगे। ऐसा ही बाकी चित्रों में भी देखें।

चित्र-18.2

यदि हम मोड़ने वाली रेखा पर एक समतल दर्पण रख दें तो भी सममित आकृतियों में आकृति के एक भाग का प्रतिबिम्ब दूसरे भाग को पूर्णतया ढ़क लेगा। इन चित्रों में मोड़ (वास्तविक या काल्पनिक रेखा) बनाएं व एक दर्पण लेकर सभी चित्रों में टूटी लाइन पर रखकर देखें।

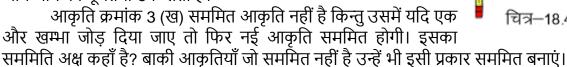
क्या दर्पण में दिखी आकृति चित्र के बाकी हिस्से के समान ही थी? यह दर्पण रेखा, आकृति की सममिति की रेखा (या सममिति अक्ष) कहलाती है।


रोहन का कहना है कि ऊपर जो भी आकृतियाँ बने हैं, वे सभी सममित आकृतियाँ हैं। क्या आप इससे सहमत है? क्यों?

आप भी पाँच सममित आकृतियाँ बनाइये और उनके सममिति अक्ष खींचिये।

क्रियाकलाप 2

सममित आकृतियाँ पहचानियें


नीचे दी आकृतियों में से कौन-कौन सी आकृतियाँ सममित है?

सममित आकृतियों को आपने कैसे पहचाना?

अब उनके सममिति अक्ष भी बनाएं। क्या जो आकृतियाँ सममित नहीं है उनमें आप कुछ जोड़ कर सममित आकृतियाँ बना सकते हैं? कोई एक आकृति लेकर सोचो।

सममित आकृतियों में आकृति का आधा भाग सममित अक्ष पर दूसरे आधे भाग को पूर्णतया ढँक लेता है।

क्रियाकलाप 3

कौन से अक्षर सममित हैं ?

आप मोटे कागज़ के टुकड़े में से A,B,C,D Y, Z के रूप काटिए। दो डिब्बे लेकर एक पर सममित है एवं दूसरे पर सममित नहीं हैं, की पर्ची चिपका दें।

चित्र-18.5

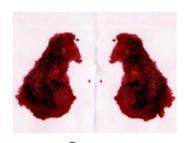
अब A,B,C,D.... को एक-एक करके देखिए। पता करें कि क्या उस अक्षर का आधा भाग सममित अक्ष पर शेष आधे भाग को पूरी तरह ढक लेता है या नहीं?

जिस अक्षर में दोनों भाग एक दूसरे को ढक लेते हैं, उसे किस डिब्बे में डालेंगे? सममित वाले डिब्बे में कौन-कौन से अक्षर आए?

किसमें ज्यादा अक्षर हैं?

यही अभ्यास क,ख,ग,.... ह अक्षर काट कर भी करो। कौन से अक्षर सममित मिले?

क्रियाकलाप 4

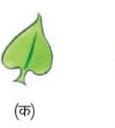

ऐसी भी सममिति:

एक कागज़ लो एवं उसे दो समान भागों में मोड़िये। एक आधे भाग पर स्याही या रंग की कुछ बूंदे डालिए। दूसरे भाग को मोड़ कर पहले भाग पर रखकर दबाइए। आप क्या देखते हैं

क्या प्राप्त आकृति सममित है? यदि हाँ तो इसकी सममिति रेखा कहाँ है।

क्या ऐसी कोई अन्य रेखा भी है, जहाँ से मोड़ने पर दो समान भाग प्राप्त हो सकते हो?

ऐसे ही कुछ और प्रतिरूपों को बनाने का प्रयास कीजिए।

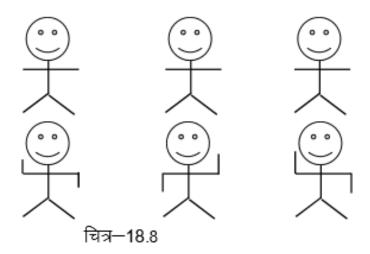


चित्र-18.6

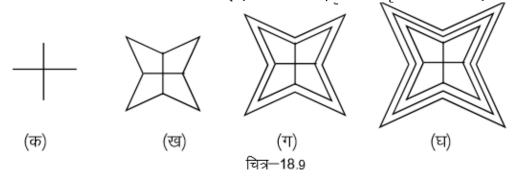
आप अपनी कक्षा में उपलब्ध वस्तुओं को देखें। उनमें समित आकृति वाली वस्तुओं की सूची बनाइए, जैसे श्याम पट्ट, मेज की ऊपरी सतह, आपकी कॉपी आदि-आदि। क्या पंखे के पंख की आकृति भी समित है? चर्चा करके अपनी सूची गुरूजी को दिखाए। प्रत्येक समित वस्तु का चित्र बनाकर उसमें समिति रेखा भी खिचियें।

क्रियाकलाप 5

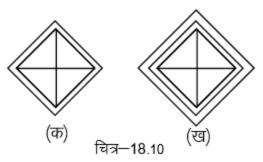
अब इन चित्रों को देखिए -


क्या ये सममित हैं?

आपने अपने घर की दीवार या गाँव के अन्य घरों की दीवार में बने हुए चित्र देखें हैं। अपनी कॉपी में भी ऐसे ही चित्र बनाइए।


क्या वे चित्र सममित होते हैं? उनके सममिति अक्ष बनाएं।

क्रियाकलाप ६

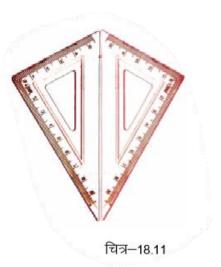

सममिति पहचानिए:

इनमें से कौन से चित्र सममित है? जो सममित नहीं है उन्हें सममित में बदल कर बनाओ। क्या आपने कभी रंगोली बनाई है? रंगोली में ऐसी भी आकृतियाँ मिलती हैं।

इनमें अलग-अलग घेरों में अलग-अलग तरह से रंग भरे जा सकते हैं।

रंग भरने पर यह सुन्दर लगती हैं। क्या इनमें भी कोई सममिति अक्ष हैं? हरेक आकृति में देखें। क्या किसी

आकृति में एक से अधिक सममिति अक्ष हैं?

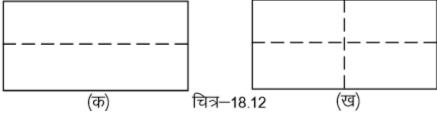

क्रियाकलाप 7

आपके ज्यामिति बॉक्स में दो सेट स्क्वायर में से एक के कोणों की माप 90°, 60° और 30° है। ऐसे ही दो समान सेट स्क्वायर लीजिए।

इन्हें आपस में मिलाकर रखिए और एक पतंग जैसी बनाइए। जैसा कि चित्र में दिखाया गया है। इस आकृति में कितनी सममिति रेखाएँ हैं?

इसी प्रकार अब दूसरे प्रकार के दो सेट स्क्वायर (कोणों की माप 90°, 45° और 45°) लीजिए और पहले की तरह साथ-साथ जोड़ कर रखिए।

कैसी आकृति बनी? इसमें कितनी सममिति रेखाएँ हैं? ऐसी और आकृतियाँ सोचो जिनमें एक से अधिक सममिति रेखाएँ हों।


क्रियाकलाप 8

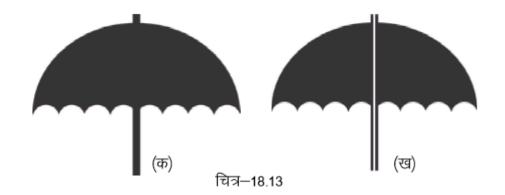
आयत और सममिति

एक पोस्टकार्ड लीजिए। उसे लम्बाई की ओर से मोड़िए (चित्र 12 क), जिससे कि एक आधा भाग दूसरे आधे भाग को पूर्णतया ढँक ले। क्या यह मोड़ एक सममिति की रेखा है?

अपने उत्तर का कारण बताओ।

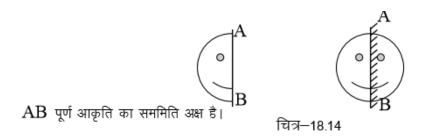
इसे खोलिए और पुनः एक बार चौड़ाई की ओर से समान तरीके से मोड़िए (चित्र 12 ख)।

क्या यह दूसरा मोड़ भी सममिति की रेखा है?


क्या आपको लगता है इसमें समिमति की दो ही रेखाएँ हैं?

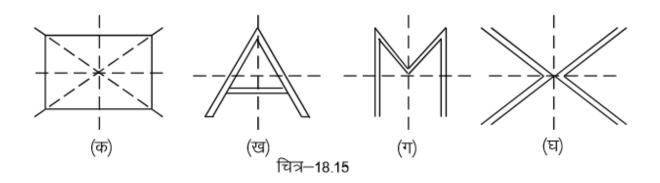
ऊपर सेट-स्कायर से बने वर्ग के बारे में फिर से सोचो। इसमें सममिति की कितनी रेखाएं हैं।

क्रियाकलाप 9

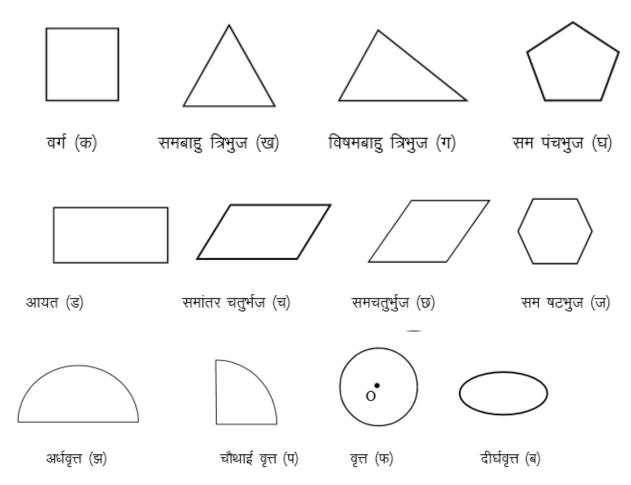

दर्पण और सममिति

नीचे एक छाते का चित्र 13 (क) है। चित्र 13 (ख) में छतरी के आधे हिस्से को समतल दर्पण के सामने खड़ा दिखाया गया है। दर्पण के चमकदार हिस्से की ओर से सामने का आधा हिस्सा और उसके प्रतिबिंब को ध्यान से देखें। क्या छतरी का चित्र पूरा प्रतीत होता हैं ?

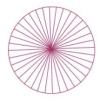
क्रियाकलाप 10


चित्र में आधा चेहरा है। रेखा । ठ पर समतल दर्पण रखने पर क्या चेहरा पूर्ण प्रतीत होता है?

क्रियाकलाप 11

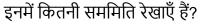

ऐसी कौन-कौन सी आकृतियाँ हैं जिनमें सममिति अक्ष पर समतल दर्पण रखने पर दोनों तरफ के हिस्से प्रतिबिंबित होते है ?

इन आकृतियों को देखिए तथा टूटी रेखाओं पर समतल दर्पण की ऐसी स्थिति का पता लगाइए जहां रखने पर प्रतिबिंब आकृति और वास्तविक आकृति एक जैसी हैं।



प्रश्नावली 18.1

निम्न आकृतियों में कौन-कौन सी सममित हैं? इनमें सममिति अक्ष ढूंढ़िए। सममित आकृति में सममिति अक्षों की संख्या लिखें व सममिति अक्ष दर्शाएं।



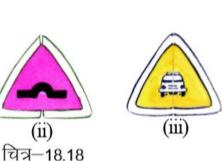
वृत्त में सममिति अक्षों की संख्या कितनी है? वृत्त अपने प्रत्येक व्यास के सापेक्ष सममित है। अर्थात् किसी भी व्यास पर से काटने पर दोनों हिस्से बराबर होते हैं।

क्रियाकलाप 12

एक वर्गाकार कागज़ लो। इसे एक बार ऊपर से नीचे एवं पुनः एक बार बायें से दायें मोड़िए। अब दी गई आकृति के अनुसार डिज़ाइन बनाइए। जैसा कि दिखाया गया है। जो आकृति बनाई गई है उस पर से काटिए और मोड़ खोल कर कागज़ को फैलाएं।

क्रियाकलाप 13

सममित रेखाएँ


तीन बॉक्स लो। तीनों पर कागज की चिट चस्पा कर दो। पहले बॉक्स पर एक सममिति रेखा, दूसरे पर दो सममिति रेखाएँ एवं अन्य पर तीन या तीन से अधिक रेखायें लिखा हआ हो।

आप अपने A,B,C,... Y,Z के ट्कडों को देखें एवं मालूम करें कि इनमें कितनी सममिति रेखाएँ हैं। जिन A.B.C.... Y.Zमें एक सममिति रेखा है उसे एक के बॉक्स में, जिनमें दो सममिति रेखाएँ हैं उन्हें दो के बॉक्स में एवं जिनमें तीन या अधिक सममिति रेखाएँ हैं उन्हें उस बॉक्स में डालें। अपने साथियों से चर्चा करें।

क्या अब आप बता सकते हैं कि सबसे ज्यादा सममिति रेखाएँ अंग्रेजी के किस अक्षर में हैं? ऐसे और भी चित्रों व आकृतियों को इसी प्रकार सममिति अक्ष के आधार पर छांटिएं।

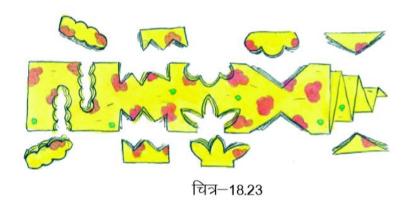
सममिति और कहाँ-कहाँ

बस में सफर करते वक्त रोड साइन (मार्ग सूचक) संकेत या चिह्न को देखते हैं। इन रोड साइन में से वे जिनमें समिमित की रेखाएँ होती है इन्हें पहचानो एवं अपनी कॉपी में लिखो।

चित्र-18.17

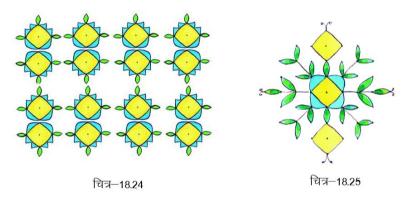
- पेडों/पत्तियों/डंठल को देखों क्या इनमें सममिति की रेखाएँ होती हैं? 2.
- क्या दिये गये चित्र में सममिति की रेखा है? 3.

चित्र-18.19


- क्या ताश के पत्तों में भी सममिति की रेखाएँ हैं ? किस पत्ते में कितनी सममिति 4. रेखा है, एक है, दो हैं, तीन हैं या अधिक हैं, बताइए।
- खेलों के मैदानों एवं बोर्ड में भी सममिति की रेखाएं होती हैं। आप ऐसे मैदानों एवं 5. बोर्ड की सची बनाएं एवं अध्यापक को बताएं।

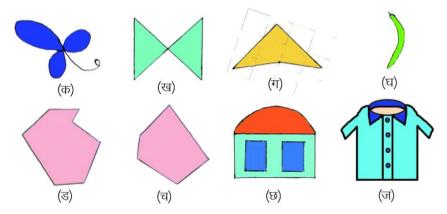
5. सभी प्रकार के वाहनों में भी सममिति होती है। जैसे बस ट्क।

कागज़ों द्वारा बनावट


एक आयताकार रंगीन कागज़ लो, इसे कई बार मोड़िए एवं इसे चित्र में दी गई आकृति के अनुसार काट लो, अब खोल कर देखो।

इसको अपनी कॉपी पर रखकर इसमें विभिन्न रंग भर कर देखो। क्या इन चित्रों में सममिति दिखाई देती है?

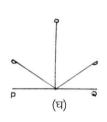
रंगोली


क्या आपने कभी त्यौहारों के अवसर पर घर पर कभी रंगोली बनाई है? क्या इनमें सममिति का प्रयोग होते देखा है? इस प्रकार के विभिन्न रंगोली पैटर्न को कागज़ पर उतार कर एक एलबम बनाएं।

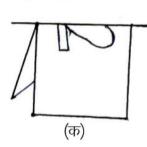
मेंहदी

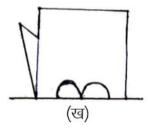
घरों में महिलाओं को मेंहदी लगाते हुए देखा है। क्या मेंहदी में भी सममिति होती हैं। अपनी कक्षा की लड़कियों के साथ चर्चा करो।

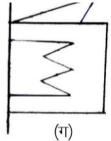
नीचे दी गई आकृतियों में पता लगाइए कि कौन सी सममित है एवं कौन सी असममित है। प्र.1.



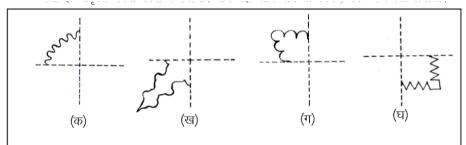
- अपने आसपास में स्थित 5 असममित आकृतियों के नाम लिखो जो इस पुस्तक में नहीं आई हों। Я.2.
- 90° का कोण बनाइए और उस पर सममिति रेखा खींचिए। Я.З.
- Я.4.
- 6 cm का एक रेखाखण्ड खींचिए और उसका सममिति अक्ष बनाइए। नीचे दी गई आकृतियाँ अधूरी है जिनका सममिति अक्ष PQ है। इन्हें पूरी कीजिए। ਸ਼.5.







नीचे कुछ मुड़ी हुई शीट की आकृतियाँ दी गई हैं जिनकी तह पर आकृतियाँ बनाई गई हैं। प्रत्येक पूर्ण आकृति की रूपरेखा खींचिए जो डिजाइन के काटने के बाद दिखाई देगी। ਸ਼.6.



प्र.7. नीचे दी गई आकृतियों को एक चार तह वाले वर्गांकित कागज़ पर बनाते तो कैसी दिखती? सोच कर वैसी ही आकृति अपनी कॉपी में बनाओ। यदि नहीं सोच पाते तो कागज़ काट कर पता

लगाओ।

प्र.8. 1 से 100 तक की संख्याओं में से सममित संख्याएँ कौन-कौन सी है? पता लगाओ एवं अपनी कॉपी में लिखो।

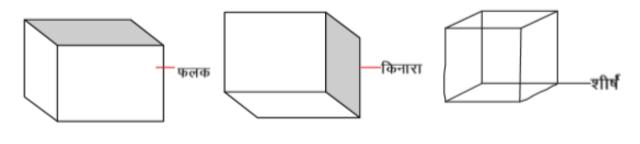
त्रिविमीय आकृतियाँ

हम अपने दैनिक जीवन में कुछ ऐसी ठोस वस्तुओं को देखते हैं जिनका आकार सपाट नहीं होता है।

केन : बेलनाकार

पुस्तकः घनाभ का आकार

आइसक्रीमः शंकु का आकार


गेंदः गोलाकार

पासा:घन का आकार

चित्र-18.26

फलक किनारे और शीर्ष

चित्र-18.27

त्रिविमीय आकारों में हम उनके फलकों, किनारों और शीर्षों को सरलता से पहचान सकते हैं।

उदाहरण के लिए, एक घन को लीजिए। घनाभ की प्रत्येक उपरी सपाट (आयताकार) सतह एक फलक है। इसके दो संलग्न फलक एक रेखाखण्ड में मिलते हैं जो घनाभ का किनारा कहलाता है। घनाभ के तीन संलग्न किनारे एक बिन्दु पर मिलते हैं, जिसे घनाभ का शीर्ष कहते हैं। इस प्रकार एक घनाभ में 6 आयताकार फलक, 12 किनारे और 8 शीर्श होते हैं।

क्रियाकलाप 14

उचित संबंध जोड़िए 1. (i) থাকু (i) गोला (ii) (ii) बेलन (iii) (iii) (iii) (iv) घन (v) (v) घनाभ

- निम्न वस्तुएँ किस आकार की हैं -2.
 - चॉक का डिब्बा (i)
 - टेनिस बॉल (ii)
 - (iii) पाइप
 - जोकर की टोपी (iv)
 - पासा (v)
- 3.
- 4.
- किन्ही चार वस्तुओं के नाम बताइए जो एक घनाभ आकार से मिलती जुलती हों। किन्ही ऐसी तीन वस्तुओं के नाम बताइये जो बेलन के आकार से मिलती जुलती हों। नीचे दी गयी गई सारणी में त्रिविमीय आकृतियों के फलक, किनारे व शीर्षों की संख्या लिखिए -5.

सारणी

आकृति				
फलक	समतल			
	वक्र			
किनारे	सीधे			
	वक्र			
शीर्ष				

हमने सीखा

- हम फूलों को देखते हैं, सुन्दर चित्रों को, इमारतों को और अन्य चीज़ों को देखते हैं। ये सब 1. आकृतियाँ समित आकृतियाँ है। सममितता से वस्तुएँ सुन्दर लगती हैं।
- 2.
- दिन प्रतिदिन हर जगह जब हम ऐसी आकृतियों को देखते हैं जो बराबर संतुलित अनुपात में हों तब हम कहते हैं, ये आकृतियाँ सममित आकृतियाँ हैं। 3.
- हमारे आस-पास कई प्रकार की त्रिविमीय आकृतियाँ होती हैं। इनमें से कुछ घन, घनाभ, गोला, 4. बेलन और शंकु हैं।

उत्तर माला 1

$$(iii) =$$

$$(i) -160$$

$$(iii) -756$$

$$(i) -5$$

$$(v) - 16$$

$$(ix) -1$$

$$(ix) -1$$
 $(x) -20$

$$(i) =$$

$$(iv) > (v) =$$

$$(vii) =$$

$$(ix) =$$

$$(ix) = (x) <$$

$$(i) \qquad \frac{3}{7}$$

$$\frac{6}{5}$$

$$6 \overline{4}$$

उत्तरमाला 2.1

$$\frac{4}{1}, \frac{-3}{7}, -27, \frac{-3}{-5}$$

$$\frac{-38}{1}$$
, $\frac{17}{1}$, $\frac{0}{1}$, $\frac{-100}{1}$, $\frac{79}{1}$

$$\frac{1}{10} = \frac{2}{10} = \frac{3}{15} = \frac{4}{20}$$
.

$$\frac{-3}{4} = \frac{-6}{9}$$

$$\frac{1}{5} = \frac{2}{10} = \frac{3}{15} = \frac{4}{20}$$
, (ii) $\frac{-3}{4} = \frac{-6}{8} = \frac{-9}{12} = \frac{-12}{16}$,

$$\frac{-5}{8} = \frac{-10}{16} = \frac{-15}{24} =$$

(iii)
$$\frac{-5}{8} = \frac{-10}{16} = \frac{-15}{24} = \frac{-20}{32}$$
 (iv) $\frac{6}{11} = \frac{12}{22} = \frac{18}{33} = \frac{24}{44}$,

$$\frac{4}{(v)} = \frac{8}{6} = \frac{12}{9} = \frac{16}{12}.$$

4.
$$\frac{5}{8}, \frac{-4}{9}, \frac{1}{3}, \frac{-1}{2}, \frac{-7}{10}$$

5. (i) $\frac{4}{12}, \frac{8}{24}, \frac{1}{3}, \frac{25}{75}$ (ii) $\frac{-3}{5}, \frac{-6}{10}, \frac{-15}{25}, \frac{-27}{45}$

5. (i)
$$\frac{1}{12}$$
, $\frac{3}{24}$, $\frac{1}{3}$, $\frac{25}{75}$

$$\frac{-3}{5}, \frac{-6}{10}, \frac{-15}{25}, \frac{-27}{45}$$

7. (i)
$$-\frac{6}{16}$$

नहा
$$\frac{6}{(i)} - \frac{6}{16}$$
 $\frac{12}{(ii)} - \frac{9}{-32}$ $\frac{12}{(iii)} - \frac{9}{-24}$ $\frac{12}{(iv)} - \frac{32}{32}$

$$(iv) - 32$$

उत्तरमाला 2.2

3.
$$(i) >$$

(i) > (ii) < (iii) = (iv) > (v) >
$$\frac{7}{13}$$
 (ii) $\frac{2}{5}$ (iii) $\frac{-21}{20}$ (iv) $\frac{7}{9}$

4. (i)
$$\frac{1}{13}$$

(iii)
$$\overline{20}$$

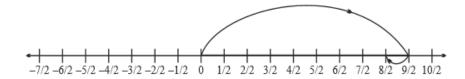
$$(iv) \overline{9}$$

5. (i)
$$\frac{13}{3}$$

$$\frac{-1}{(iii)}$$

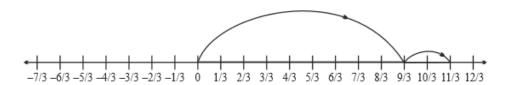
$$\frac{13}{(i)}$$
 $\frac{-7}{3}$ $\frac{-17}{(iii)}$ $\frac{-17}{11}$ $\frac{-17}{(iv)}$ $\frac{11}{11}$

$$\frac{-4}{12} < \frac{-5}{18} < \frac{-9}{-27} = \frac{2}{6}$$


$$\frac{-4}{12} < \frac{-5}{18} < \frac{-9}{-27} = \frac{2}{6}$$
 $\frac{2}{7} > \frac{1}{28} > \frac{-5}{14} > \frac{-8}{7}$

- 8. (i) असत्य
- (ii)सत्य
 - (iii) असत्य (iv)सत्य

उत्तरमाला 2.3


- दोनों को बराबर समय लगता है 2. हाँ 1.

3.

वह घर से किलोमीटर की दूरी पर है।

4.

वह शाला से 3 किलोमीटर की दूरी पर है।

उत्तरमाला 3.1

- (□□)समद्विबाह् (iii) 60 (iv) 35° (v) बड़ी 1. **(i)** बराबर
 - छोटी (vi)
- $\angle C=50^{\circ} \angle C=80^{\circ}$ (i) 2.
 - (iii) $\angle E = \angle F = 48^{\circ}$
- 3.
 - 4. (i) नहीं, क्योंकि उनके सम्मुख कोण बराबर XY और YZ, $\angle Y = 100^\circ$ नहीं हैं।
 - (ii) AC बड़ी है AB से

(ii) $\angle R=45^{\circ} \angle P=90^{\circ}$

(iv) $\angle L = \angle M = \angle N = 60^{\circ}$

- (iii) बड़े कोण के सम्मुख
- $\angle Q = 28^{\circ}, \angle P = 124^{\circ}$ 5.
- 6. 30° और 120°

7. 55°

- 8. $x = 45^{\circ}$
- 9.
- $\angle A = 36^{\circ}$, $\angle B = \angle C = 72^{\circ}$ 10. PQ और RQ सबसे बड़ी भुजा = PR
- $40^{\circ}, 60^{\circ}, 80^{\circ}$ 11.

उत्तरमाला 3.2

1.(i) मध्य बिन्द् (ii) लम्ब (iii) संगामी (iv) केन्द्रक (v) लम्ब केन्द्र (vi) 2:1

उत्तरमाला 4.1

- (i) 2 (ii) 9 (iii) 2 (iv) 5 1.
- (i) 4 (ii) $\frac{-17}{4}$ (iii) -3 (iv) $\frac{18}{5}$ (v) 2 (vi) 34 (vii) $\frac{1}{4}$ (viii) 5 (ix) 2

उत्तरमाला ४.२

- 1. (i) $\frac{2}{3}x = 24$
- (ii) 2x + x = 51 (iii) $\frac{x}{10} = 2500$
- 2. (iv) x+(x+1) = 15 (v) $\frac{x}{x+5} = \frac{19}{24}$
- 2. 4 (3) 100 रु., 200 रु. (4) 14; (5) लं.= 9 सेमी, चौ.= 6 सेमी (6) लं.= 18 सेमी, चौ.= 27 सेमी. (7) बालक = 25 एवं बालिकाएँ = 10 (8) 32 (9)17 एवं 18 (10) 12 एवं 36 (11)275 मी. 100 मी.
- (12) (i) 45° (ii) 120°, (iii) 30°

उत्तरमाला 5.1

1. (i)
$$(10-2) \div 30$$

(ii)
$$(12-5) \times 27$$

(ii)
$$(12-5) \times 27$$
 (iii) $(4.5+2.3) \div 3.8$

$$\frac{8}{\text{(iv)}} \frac{8}{27} \div \left(\frac{2}{3} + \frac{7}{15}\right)$$

2. (i)
$$(15+27) \times (8-6)$$

(ii)
$$(37 \times 28) + (11 \div 29)$$

(iii)
$$(8.45 - 6.75) \times (3.2 + 2.4)$$
 (iv) $2(5+11) - (8-3)$

(iv)
$$2(5+11) - (8-3)$$

$$(v) \left(\frac{4}{27} + \frac{5}{9}\right) \div \frac{7}{8}$$

उत्तरमाला 5.2

1.
$$6 a + 20b$$
 2. $3a - 6b$

3. 2*x*

4. 2x+10

5.
$$30 - 60x + 30y$$
 6. 34.5

$$8.23a + 18b - 9$$

9.
$$1\frac{1}{4}$$

2.

उत्तरमाला 5.3

(i)
$$-4x$$
 (ii) 0 (iii) 18 (iv) 507 (v) (vi)

(ii) सत्य

(iii) सत्य (iv) असत्य

(i) 35047 4.

उत्तरमाला 6.1

(a)
$$3^{5}$$

$$3^5$$
 (b)

(c)
$$a^7$$

$$3^5$$
 (b) 5^8 $3^4 \times 5^4$ (b)

$$2^5 \times 3^5 \times 7^5$$

$$2^5 \times 3^5 \times 7^5$$
 (c) $3^3 \times 17^3$

(d)
$$3^{\text{m}} \times 7^{\text{m}}$$

(e)
$$5^6 \times 13^6$$

$$(4) \qquad (a)$$

$$42^8$$
 (b)

$$(ab)^3$$
 (c)

$$(pqr)^9$$
 (d)

$$(abcd)^n$$

$$(5) \qquad (a)$$

सत्य (b)

सत्य (c) असत्य (d)

सत्य (e)

सत्य

उत्तरमाला 6.2

(1) (a)
$$6^2$$

(c)
$$13^{m-n}$$

(d)
$$(mn)^5$$
 (e)

(a)
$$12^3$$

(b)
$$\overline{19^5}$$

(c)
$$\overline{3^4}$$

(d)
$$\overline{5^3}$$

(b)
$$x^{-5}$$

(5) (a) $\frac{1}{3^9}$ (b) $\frac{1}{a^{-m}b^m}$ (c) $\frac{1}{p^9}$

(6) (a) 1 (b) 1

(7) (a) x=2 (b) x=3 (c) x=0 (d) x=-1 (e) x=-3 (f) x=1

(c) 1

(8) 1.25×10^{-2}

उत्तरमाला 8.1

1. i) ∠X ii) ∠B iii) ∠C

iv) XY v) BC vi) AB

2. XY=4.5 सेमी OX=3.7 सेमी, OY=2.9 सेमी, $\angle XOY=\angle MON=70^\circ$, $\angle Y=60^\circ$, $\angle X=50^\circ$

3. i) सत्य ii) असत्य iii) सत्य

iv) असत्य vi) सत्य vii) असत्य

उत्तरमाला 8.1

1. (i) हां, भु-को-भु (ii) हां समकोण कर्ण भुजा (iii) हां, को-भु-को (v) समकोण कर्ण भुजा (vi) भु.भु.भु.

2. (i)समकोण कर्ण भुजा (ii)भुजा भुजा भुजा (iii) समकोण कर्ण भुजा (iv)नहीं

3. भु-को-भु

4. (i) सत्य (ii) असत्य (iii) असत्य

5. $\Delta PQR \cong \Delta SQR$ समकोण कर्ण भुजा 6. (ii) 7. भु-भु-भु

उत्तरमाला 9.1

1. (a) 9pq (b) 6xy (c) 10x + 10y

(d)
$$3xy + 11y + 3z$$
 (e) $x + y - z$ (f) $4x + 18y + 12z - 12$

(g) 4x - xy - 4y + 2 (h) $-4x^2y^2 + 3x^2 - 5x$

2. (a) 5x (b) 16x (c) -10x

(d) 3x (e) $4x^2 + x + 9$ (f) 2x - 8xy + 3z

(g) xy - 7a - 6b - 3ab

3. (i) $-ab - 11b^2c - bc^2$ (ii) $-4m^2 - 4nm - 3n^2$

4. 11x + 13y

5. $5x^2 + 2x + 5$.

उत्तरमाला 9.2

(iii)
$$-x \times 3xy + xz$$

(iv)
$$15a,10ab$$

(v)
$$(-3 x^2 y) . y^2, (2z). y^2 - 3x^2y^3, zy^2z$$

(vi)
$$5x$$
, $7y^2 z^3$

(i)
$$7xy + 8x^2y$$

(ii)
$$6r^2 t^2 - 10st^2$$
 (iii)

(iv)
$$\frac{1}{2}m^4 + \frac{1}{2}mn$$

(v)
$$\frac{8}{3}ab^2 + \frac{2}{3}ac$$

उत्तरमाला 10

2.

ST = 3 सेमी, TV = 3 सेमी, SU =
$$3\sqrt{2}$$
 सेमी

उत्तरमाला 11.1

1)
$$\frac{4}{5}$$
, $\frac{7}{50}$ सांत, $\frac{8}{7}$, $\frac{-15}{49}$, $\frac{3}{28}$ असांत

(2)
$$\frac{3}{5} = 0.6$$
, $\frac{4}{25} = 0.16$, $\frac{7}{10} = 0.7$, $\frac{-13}{125} = -0.104$ $\frac{9}{40} = 0.225$

(3)
$$\frac{2}{3} = 0.\overline{6}, \quad \frac{-5}{6} = -0.8\overline{3}, \quad \frac{8}{15} = 0.5\overline{3}, \quad \frac{3}{11} = 0.\overline{27}, \quad \frac{19}{45} = 0.4\overline{2}$$

उत्तरमाला 11.2

1) (a)
$$\frac{1}{5}$$
 (b) $\frac{11}{20}$ (c) $\frac{25}{4}$ (d) $\frac{87}{40}$ (e) $\frac{1453}{100}$

(2) (a)
$$\frac{4}{9}$$
 (b) $\frac{718}{99}$ (c) $\frac{17}{300}$ (d) 18 (e) $\frac{6}{11}$

उत्तरमाला 11.3

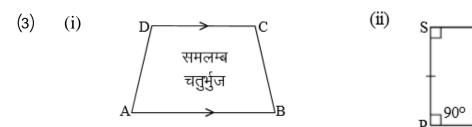
- (1) (i) 1.3297 (ii) 0.44224 (iii) 13.8213 (iv) 10.4904
- (2) (i) 5.566 (ii) 5.00271 (iii) 10.910 (iv) 9.20093
- (3) (i) 36.45 (ii) 0.018459 (iii) 0.0001 (iv) 29.173632
- (4) (i) 1.5 (ii) 170.06 (iii) 0.219 (iv) 30.15
- (5) (i) 0.4 (ii) 1996.6579
- (6) 44.04 v. (7) 365.58 (8) 493800 v.

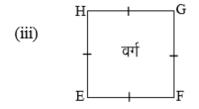
उत्तरमाला 12.1

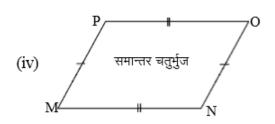
- 2. (1) 50° (2) 40° (3) 30° (4) 15°
 - (5) 90° (6) 20°
- 3. (1) 70° (2) 110° (3) 180° (4) 60°
 - (5) 135° (6) 130°
- 4. 60°, 30°
- 5. 60°, 120°
- 6. $\angle SOZ = 40^{\circ}, \ \angle XOS = 140^{\circ}$
- 7. रेखीय युग्म के कोण
- 8. (i) 145° (ii) 75° (iii) 108° (iv) 40° (v) 55° (vi) 126°
- 9. (i) 30°
- (ii) 140°
- 10. (i) 30°, 150°, 30° (ii) 140°,40°,140°
- 11. (i) 45° (ii) 120° (iii) 55° (iv) 125°

उत्तरमाला 12.2

- 1. (i) समान्तर (ii) बराबर (iii) 1270 (iv) 92.50 (v) संगामी
- 2. (i) सत्य (ii) असत्य (iii) सत्य (iv) सत्य
- 3. (i) $\angle 1$ $\forall \vec{q}$ $\angle 7$, $\angle 4 = \angle 6$, $\angle 2$ $\forall \vec{q}$ $\angle 8$, $\angle 3 = \angle 5$ (ii) $\angle 1$, $\angle 4$, $\angle 6$, $\forall \vec{q}$ $\angle 7$
 - (iii) ∠2, ∠3, ∠5, ∠8 (iv) ∠1 एवं ∠5, ∠4 एवं ∠8, ∠2 एवं ∠6, ∠3 एवं ∠7
 - (v) $\angle 2$ एवं $\angle 5$, $\angle 3$ एवं $\angle 8$
 - (vi) $\angle 1 = 70^{\circ}$, $\angle 7 = 70^{\circ}$, $\angle 3 = 70^{\circ}$, $\angle 2 = 110^{\circ}$, $\angle 4 = 110^{\circ}$, $\angle 6 = 110^{\circ}$, $\angle 8 = 110^{\circ}$
- 4. (A) DE | | AC तथा तिर्यक रेखाएँ AB तथा BC
 - (B) AB | | EC तथा तिर्यक रेखाएँ AC तथा BD
- 5. $\angle ABC=70^{\circ} \angle ACB=25^{\circ}$
- 6. $x = 60^{\circ}$, $y = 50^{\circ}$
- 7. $X=70^{\circ}$, $y=110^{\circ}$, $z=70^{\circ}$
- 8. $b=130^{\circ}$, $a=50^{\circ}$, $d=130^{\circ}$
- 9. $x=60^{\circ}, y=120^{\circ}$
- 10. $x = 45^{\circ}$ क्योंकि q तिर्यक रेखा है। 11. $\angle 1 + \angle 5 = 180^{\circ}$ (अन्तःकोण युग्म) $\angle 3 + \angle 5 = 180^{\circ}$ ($\angle 1 = \angle 3$) $\angle 9 = 90^{\circ}$ ($\angle 9 = \angle 11$, संगत कोण)
 - $∠10 = 90^{\circ} (∠9 = ∠10, शीर्षाभिमुख कोण)$


- 12. $y = 60^{\circ}, \angle 2 = 120^{\circ}, \angle 1 = 150^{\circ}, z = 270^{\circ}$
- 13. $x = 27^{\circ}$
- 14. $\angle A = 80^{\circ}$
- 15. $a = 40^{\circ}, b = 40^{\circ}, c = 40^{\circ}, d = 40^{\circ}, e = 40^{\circ}$


उत्तरमाला 13.1


- 1) (i) दो (ii) त्रिभुजों (iii) 360° (iv) दो (v) चार,तीन
- (2) (i) नहीं (ii) हाँ (iii) हाँ (iv) हाँ
- (3) 115° (4) 110° (5) 90° (6) 95°
- (7) 45°, 75°, 105° एवं 135°
- (8) (i) सत्य (ii) असत्य (iii) सत्य (iv) असत्य (v) असत्य (9) 120°

उत्तरमाला 13.2

- 1) (i) समलम्ब (ii) 90° (iii) समान्तर, बराबर (iv) वर्ग
 - (v) सुम्चातुरभुज
- (2) (i) सत्य (ii) असत्य (iii) असत्य (iv) सत्य (v) असत्य

आयत

उत्तरमाला 14.1

- 1- (i), (ii), (vi), (vii), (ix), (xi)
- 2- समानुपाती (i), (ii), (iv), (ix), (x)

(iii) 4:6::12:18 (v) 11:22::44:88 (vi) 1:4::2:8 (vii) 15:25::3:5 (viii) 34:68::112:224 (xi) को व्यवस्थित कर समान्पात नहीं बनाया जा सकता (ii) 220 मीटर (i) 64 (iii) 9 घंटे 3. 100 मीटर 6. 12 प्रतियाँ 135 रुपये 4. 2 (i) 8 घंटे में (ii) 357.50 किलोमीटर 38.50 रू. 1.. (iv) 48 किताब (iii) 10 किलोग्राम 3. 4. 1800 रूपये 5. 640 रूपये किताबों की संख्या मुल्य (रुपये में) 6. 2500 50 3750 75 2 100 60 3000 उत्तरमाला 15.1 15 वर्ग सेमी 7 वर्ग सेमी (ii) (1) (i) 25 वर्ग सेमी 49 वर्ग सेमी (ii) (i) (2) 169 वर्ग सेमी 12.25 वर्ग सेमी (iii) (iv) 10,000 वर्ग सेमी (3) 1 वर्ग मीटर 10 वर्ग (5) (4) १० टुकड़े (7) 12,000 ₹. (6) (i) चार गुना 9 गुना (8) (ii) 25,00 रु. 24000 ফ. (9)(10)उत्तरमाला 15.2 28.29 वर्ग सेमी (लगभग) 154 वर्ग सेमी (ii) (iii) 616 वर्ग सेमी 1. (i) 50.29 वर्ग सेमी (लगभग) 314.29 वर्ग सेमी (v) 2. (iv) (vi) 154 वर्ग सेमी उत्तरमाला 16.1

1. (अ) $\frac{1}{4}$, 0.25 एवं 25 % (ब) $\frac{1}{2}$, 0.5 एवं 50% (स) $\frac{3}{10}$, 0.30 एवं 30%

- (द) $\frac{1}{8}$, 0.125 एवं 12.5% (य) $\frac{3}{5}$,0.6 एवं 60% (र) $\frac{1}{2}$,0.50 एवं 50%
- (ल) ⁻ एवं 100%
- 2. (अ) $\frac{1}{4}$, 25% (ब) 0.25, 25% (स) प्रति सैंकड़ा (द) $\frac{3}{4}$, 0.75 (इ) $\frac{1}{100}$
- 3. $\frac{1}{1}$ 4. $\frac{1}{1}$ 5. $\frac{3}{4}$ 6. $\frac{1}{4}$, 0.25

उत्तरमाला 16.2

- 1 (i) हानि = 21 रु. हानि: %= 3% (iv) लाभ = 24 रु. लाभ: %= 8%
 - (v) हानि = 22 रु. हानि: %= 20%
- 2 (i) वि.मू. = 340 रु., लाभ: %= ¹³ 3 % (ii)वि.मू. = 525 रु., लाभ: % = 5%
 - (iii) 6.4 = 1120 8.4, $6\frac{2}{3}$ % 6.4 = 1120 8.4, $6\frac{2}{3}$ % 6.4 = 1120 8.4 = 1120
- 3 (ii) क्रय मूल्य = 180 रु., हानिः = (iii) क्रय मूल्य = 1120, लाभ = 25%
 - (iv) क्रय मूल्य = 1000, हानि = 5% (v) क्रय मूल्य 350 रु. लाभ
- 4. 25%

- 5. 10% 6. $3\frac{3}{27}$ %
- 7. 600 रु. 8. 16.32 रु. प्रति दर्जन
- 9. 165 रु. 10. 5775 रु. 11. 900 रु.
- 12. 2079 रु. 13. 25% 14. हानि,
- 15. 1035 रु.

उत्तरमाला 16.3

- 1 (i)150 ₹. (ii)750 ₹. (iii)1000 ₹. (iv)1450.75 ₹. (v) 1145.25 ₹.
- 2 (i) 720 ₹. (ii)148.50 ₹. (iii)93 ₹. (iv)42.02 ₹. (v)104 ₹.
- 3 (i) 3078 ₹. (ii) 4400 ₹. (iii)1539 ₹. (iv)1048.33 ₹.

उत्तरमाला 16.4

- 1. (i) वर्ष (ii) दर 7% (iii)मूलधन = 150 रु. (iv) मूलधन = 576 रु.
 - (v) समय 1 वर्ष 8 माह
- 2. 500 रु. 3. दर 7.2% 4. 8% 5. 900 रु. 6. 6 वर्ष 7. 7%
- 8. 1(वर्ष या 1 वर्ष 3 माह) 9. 13% (10) 10 वर्ष

उत्तरमाला 17.1

श्न 1

अंक	टेली चिह्न	बारम्बारता
0		2
1		2
2	Ш	5
3	Ш	5
4		3
5		3

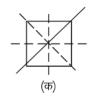
प्रश्न 2

तापमान	टेली चिह्न	बारम्बारता
37.8		2
37.9	Ш	3
38.0		2
38.1	\blacksquare	3
38.2		3
38.3		2

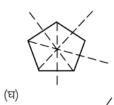
- प्रश्न 3 (क) द्वितीय श्रेणी
- (ख) 40
- (刊) 36

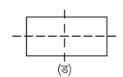
उत्तरमाला 17.2

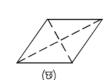
- (1) हिन्दी-37000, बंगला-12000, उर्दू-15000, मराठी-10000, पंजाबी-5000, अंग्रेजी-20000 5.
 - (2) 5000
 - (3) पंजाबी
 - (4) पंजाबी-5000, मराठी-10000, बंगला-12000, उर्दू-15000, अंग्रेजी-20000, हिन्दी-37000

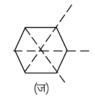

उत्तरमाला 17.3

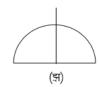
- 72 1.
- 2.60
- 3.8
- 4. 30 कि.ग्रा. 5. 67 6. 5 7. 3

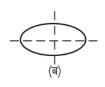

- 8. 5
- 9. 8

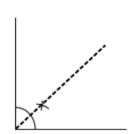

उत्तरमाला 18.1


1.

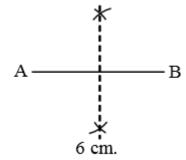


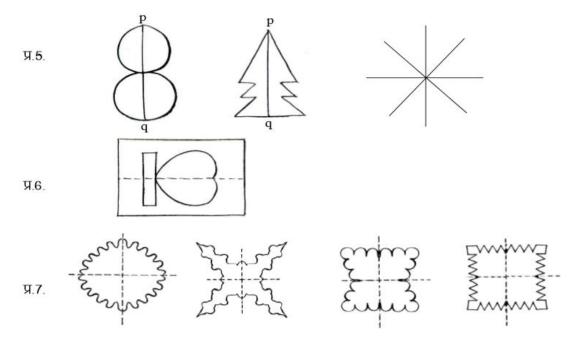





उत्तरमाला 18.2

प्र.1.


सममित	असममित
ख	क
ग	घ
চ্চ	ड़
ज	च


प्र.२. स्वयं बताओ

Я.З.

प्र.4.

 प्र.8.
 3, 8, 11, 13, 18, 22, 33, 44, 55, 66, 77, 88, 99, 83, 38, 80,